

Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8=50, will be treated as malpractice. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Х	0	1	2	3	4	5			
у	9	18	24	28	26	20			
1 of 3									

18MAT31

Module-3

5 a. If
$$f(x) = \begin{cases} 1-x^2 & |x| < 1 \\ 0 & |x| \ge 1 \end{cases}$$
 Find the Fourier transform of $f(x)$ and hence find value of $\int_0^x \frac{x \cos x - \sin x}{x^2} dx$. (06 Marks)
b. Find the Fourier Cosine transform of $f(x) = \begin{cases} 4x, & 0 < x < 1 \\ 4-x, & 1 < x < 4 \\ 0, & x > 4 \end{cases}$ (07 Marks)
c. Find the Z - transform of $\cos\left(\frac{n\pi}{2} + \frac{\pi}{4}\right)$. (07 Marks)
d. Find the Z - transform of $\cos\left(\frac{n\pi}{2} + \frac{\pi}{4}\right)$. (07 Marks)
d. Solve the Integral equation **OR**
6 a. Solve the Integral equation **OR**
6 a. Solve the Integral equation $\int_0^x f(\theta) \cos \alpha + \theta = \int_0^1 \frac{2x^2 + 3x}{(x^2 + 2)(x - 4)}$. (07 Marks)
b. Find the Inverse Z - transform of $\frac{2x^2 + 3x}{(x^2 + 2)(x - 4)}$. (07 Marks)
c. Using the Z - transform, solve $Y_{x12} - 4Y_x = 0$, given $Y_0 = 0$, $Y_1 = 2$. (07 Marks)
7 a. Using Taylor's series method, solve the Initial Value problem $\frac{dy}{dx} = x^2y - 1$, $y(0) = 1$ at the point $x = 0.1$. Consider upto 4^{th} degree term. (06 Marks)
b. Use modified Fuer's method to compute $y(0.1)$, given that $\frac{dy}{dx} = x^2 + y$, $y(0) = 1$ by taking $h = 0.05$. Consider two approximations in each step. (07 Marks)
c. Given that $\frac{dy}{dx} = x - y^2$, find y at $x = 0.8$ with $\frac{[x]{[0]} 0.02 0.0795 0.1762]}{[y]}$. By applying Milne's method. Apply corrector formula once. (07 Marks)
b. Given $\frac{dy}{dx} = x + y^2$, $y(0) = 1$ at $x = 0.4$ by taking $h = 0.2$. Consider two modifications in each step. (06 Marks)
b. Given $\frac{dy}{dx} = x + \frac{y}{2}$, $y(0) = 1$ at $x = 0.4$ by taking $h = 0.2$. Consider two modifications in each step. (06 Marks)
b. Given $\frac{dy}{dx} = 3x + \frac{y}{2}$, $y(0) = 1$. Compute $y(0.2)$ by taking $h = 0.2$ using Runge – Kutta method of order IV. (07 Marks)
c. Given $\frac{dy}{dx} = (1 + y)x^2$ and $y(1) = 1$, $y(1.1) = 1.233$, $y(1.2) = 1.548$, $y(1.3) = 1.979$, determine $y(1.4)$ by Adam's Bashforth method. Apply corrector formula once. (07 Marks)
2 of 3

Module-5

- Given y'' xy' y = 0 with y(0) = 1, $\overline{y'(0)} = 0$. Compute y(0.2) using Runge Kutta method. 9 a. (06 Marks)
 - Derive Euler's equation in the form $\frac{\partial f}{\partial y}$ $\frac{\mathrm{d}}{\mathrm{d}x}$ $\frac{\partial f}{\partial f}$ = 0.b. (07 Marks)
 - Prove that the geodesics on a plane are straight lines. c.

د. در افت ب

OR

- Find the curve on which functional 10 a. $\int [(y')^2 + 12xy] dx \text{ with } y(0) = 0, y(1) = 1 \text{ can be extremized.}$
 - Obtain the solution of the equation $\frac{2d^2y}{dx^2} = 4x + \frac{dy}{dx}$ by computing the value of dependent b. variable corresponding to the value 1.4 of the independent variable by applying Milne's method using the following data. Apply corrector formula once. (07 Marks)

x :		1	1,1	1.2	1.3
y :		2	2.2156	2.4649	2.7514
y' :		2	2.3178	2.6725	3.0657
	1	<u> </u>			

A heavy cable hangs freely under gravity between two fixed points. Show that the shape of c. x + athe cable is Catenary $y = c \cosh b$ (07 Marks)

(07 Marks)

(06 Marks)