

18МАТ31

Third Semester B.E. Degree Examination, Jan./Feb. 2021 Transform Calculus, Fourier Series and Numerical Techniques

Time: 3 hrs .
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find the Laplace transform of $\cos t \cos 2 t \cos 3 t$.
(06 Marks)
b. If $\mathrm{f}(\mathrm{t})=\left\{\begin{array}{cc}\mathrm{t}, & 0<\mathrm{t}<\mathrm{a} \\ 2 \mathrm{a}-\mathrm{t}, & \mathrm{a}<\mathrm{t}<2 \mathrm{a}\end{array}\right.$ and $\mathrm{f}(\mathrm{t}+2 \mathrm{a})-\mathrm{f}(\mathrm{t})$, show that $\mathrm{L}\{\mathrm{f}(\mathrm{t})\}=\frac{1}{\mathrm{~s}^{2}} \tan \mathrm{~h}\left(\frac{\mathrm{as}}{2}\right)$.
(07 Marks)
c. Find the Inverse Laplace transforms of :
i) $\frac{2 s+1}{s^{2}+6 s+13}$
ii) $\frac{1}{3} \log \left(\frac{\mathrm{~s}^{2}+\mathrm{b}^{2}}{\mathrm{~s}^{2}+\mathrm{a}^{2}}\right)$,
(07 Marks)

OR

2 a. Express the function $f(t)$ in terms of unit step function and find its Laplace transform, where

$$
f(t)=\left\{\begin{array}{cc}
1, & 0<t \leq 1 \\
t, & 1<t \leq 2 \\
t^{2}, & t>2
\end{array}\right.
$$

(06 Marks)
b. Find the Inverse Laplace transform of $\frac{s^{2}}{\left(s^{2}+a^{2}\right)^{2}}$ using Convolution theorem.
(07 Marks)
c. Solve by the method of Laplace transforms, the equation

$$
\begin{equation*}
y^{\prime \prime}+4 y^{\prime}+3 y=e^{-t} \text { given } y(0)=0, y^{\prime}(0)=0 \tag{07Marks}
\end{equation*}
$$

Module-2

3 a. Obtain the Fourier series of the function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$ in $-\pi \leq \mathrm{x} \leq \pi$.
(06 Marks)
b. Obtain the Fourier series expansion of

$$
f(x)=\left\{\begin{array}{ccc}
x & , & 0<x<\pi \\
x-2 \pi & , & \pi<x<2 \pi
\end{array}\right.
$$

(07 Marks)
c. Find the Cosine half range series for $f(x)=x(\ell-x), 0 \leq x \leq \ell$.
(07 Marks)

OR

4 a. Obtain the Fourier series of $f(x)=|x|$ in $(-\ell, \ell)$.
(06 Marks)
b. Find the sine half range series for

$$
f(x)=\left\{\begin{array}{cc}
x & , \quad 0<x<\pi / 2 \\
\pi-\pi & , \quad \pi / 2<x<\pi
\end{array}\right.
$$

(07 Marks)
c. Obtain the constant term and the coefficients of the first cosine and sine terms in the Fourier expansion of y from the table.
(07 Marks)

x	0	1	2	3	4	5
y	9	18	24	28	26	20
1 of 3						

Module-3

18MAT31

5 a. If $f(x)=\left\{\begin{array}{cl}1-x^{2} & ,|x|<1 \\ 0 & ,|x| \geq 1\end{array}\right.$. Find the Fourier transform of $f(x)$ and hence find value of

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} d x . \tag{06Marks}
\end{equation*}
$$

b. Find the Fourier Cosine transform of

$$
f(x)=\left\{\begin{array}{cc}
4 x, & 0<x<1 \\
4-x, & 1<x<4 \\
0, & x>4
\end{array}\right.
$$

(07 Marks)
c. Find the $\mathrm{Z}-$ transform of $\cos \left(\frac{n \pi}{2}+\frac{\pi}{4}\right)$.
(07 Marks)

OR

6 a. Solve the Integral equation

$$
\int_{0}^{\infty} \mathrm{f}(\theta) \cos \alpha \theta \mathrm{d} \theta=\left\{\begin{array}{cc}
1-\alpha & , \quad 0 \leq \alpha \leq 1 \tag{06Marks}\\
0 & , \quad \alpha>1
\end{array} \text { hence evaluate } \int_{0}^{\infty} \frac{\sin ^{2} \mathrm{t}}{\mathrm{t}^{2}} \mathrm{dt} .\right.
$$

b. Find the Inverse $Z-$ transform of $\frac{2 z^{2}+3 z}{(z+2)(z-4)}$.
(07 Marks)
c. Using the $\mathrm{Z}-$ transform, solve $\mathrm{Y}_{\mathrm{n}+2}-4 \mathrm{Y}_{\mathrm{n}}=0$, given $\mathrm{Y}_{0}=0, \mathrm{Y}_{1}=2$.
(07 Marks)

Module-4

7 a. Using Taylor's series method, solve the Initial value problem

$$
\frac{d y}{d x}=x^{2} y-1, y(0)=1 \text { at the point } x=0.1 . \text { Consider upto } 4^{\text {th }} \text { degree term. }
$$

(06 Marks)
b. Use modified Euler's method to compute $y(0.1)$, given that $\frac{d y}{d x}=x^{2}+y, y(0)=1$ by taking $\mathrm{h}=0.05$. Consider two approximations in each step.
(07 Marks)
c. Given that $\frac{d y}{d x}=x-y^{2}$, find y at $x=0.8$ with

$\mathrm{x}:$	0	0.2	0.4	0.6
$\mathrm{y}:$	0	0.02	0.0795	0.1762

By applying Milne's method. Apply corrector formula once.
(07 Marks)

OR

8 a. Solve the following by Modified Euler's method $\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{x}+|\sqrt{\mathrm{y}}|, \mathrm{y}(0)=1$ at $\mathrm{x}=0.4$ by taking $\mathrm{h}=0.2$. Consider two modifications in each step.
(06 Marks)
b. Given $\frac{d y}{d x}=3 x+\frac{y}{2}, y(0)=1$. Compute $y(0.2)$ by taking $h=0.2$ using Runge - Kutta method of order IV.
(07 Marks)
c. Given $\frac{\mathrm{dy}}{\mathrm{dx}}=(1+\mathrm{y}) \mathrm{x}^{2}$ and $\mathrm{y}(1)=1, \mathrm{y}(1.1)=1.233, \mathrm{y}(1.2)=1.548, \mathrm{y}(1.3)=1.979$, determine $y(1.4)$ by Adam's Bashforth method. Apply corrector formula once.
(07 Marks)

Module-5

9 a. Given $y^{\prime \prime}-x y^{\prime}-y=0$ with $y(0)=1, y^{\prime}(0)=0$. Compute $y(0.2)$ using Runge - Kutta method.
(06 Marks)
b. Derive Euler's equation in the form $\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0$.
c. Prove that the geodesics on a plane are straight lines.
(07 Marks)
(07 Marks)

OR

10 a. Find the curve on which functional
$\int_{0}^{1}\left[\left(y^{\prime}\right)^{2}+12 x y\right] d x$ with $y(0)=0, y(1)=1$ can be extremized.
(06 Marks)
b. Obtain the solution of the equation $\frac{2 d^{2} y}{d x^{2}}=4 x+\frac{d y}{d x}$ by computing the value of dependent variable corresponding to the value 1.4 of the independent variable by applying Milne's method using the following data. Apply corrector formula once.
(07 Marks)

$\mathrm{x}:$	1	1.1	1.2	1.3
$\mathrm{y}:$	2	2.2156	2.4649	2.7514
$\mathrm{y}^{\prime}:$	2	2.3178	2.6725	3.0657

c. A heavy cable hangs freely under gravity between two fixed points. Show that the shape of the cable is Catenary $y=c \cosh \left(\frac{x+a}{c}\right)$.

