

15MATDIP31

Third Semester B.E. Degree Examination, June/July 2019 Additional Mathematics – I

CBCS SCHEME

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Express the complex number $\frac{(1+i)(1+3i)}{1+5i}$ in the form a+ib. (05 Marks)

b. Find the modulus and amplitude of $1 + \cos \theta + i \sin \theta$ (05 Marks)

c. Show that $(a+ib)^n + (a-ib)^n = 2(a^2 + b^2)^{n/2} \cos\left(n \tan^{-1}\left(\frac{b}{a}\right)\right)$ (06 Marks)

OR

2 a. If $\vec{A} = i - 2j + 3k$ and $\vec{B} = 2i + j + k$, find the unit vector perpendicular to both \vec{A} and \vec{B} .

b. Show that the points -6i+3j+2k, 3i-2j+4k, 5i+7j+3k and -13i+17j-k are coplan. (05 Marks)

c. Prove that $\begin{bmatrix} \vec{B} \times \vec{C}, \ \vec{C} \times \vec{A}, \ \vec{A} \times \vec{B} \end{bmatrix} = \begin{bmatrix} \vec{A} \ \vec{B} \ \vec{C} \end{bmatrix}^2$ (06 Marks)

Module-2

3 a. Find the nth derivative of $\frac{x}{(x-1)(2x+3)}$. (05 Marks)

b. Find the angle of intersection of the curves $r = a(1 + \cos\theta)$ and $r = b(1 - \cos\theta)$. (05 Marks)

Obtain the Maclourin series expansion of the function $\sin x$ upto the term containing x^4 .

(06 Marks)

OR

4 a. Show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2u \log u$ where $\log u = \frac{x^3 + y^3}{3x + 4y}$. (05 Marks)

b. If u = f(x - y, y - z, z - x) prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$. (05 Marks)

c. If $u = x + 3y^2 - z^3$, $v = 4x^2yz$, $w = 2z^2 - xy$, evaluate $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at (1, -1, 0). (06 Marks)

Module-3

5 a. Obtain the reduction formula for $\int \sin^n x \, dx$. Hence evaluate $\int_0^{\pi/2} \sin^n x \, dx$. (05 Marks)

b. Evaluate $\int_{0}^{\infty} \frac{x^6}{(1+x^2)^7} dx$. (05 Marks)

c. Evaluate $\iint_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz$. (06 Marks)

15MATDIP31

OR

6 a. Evaluate
$$\int_{0}^{2a} \int_{0}^{x^2/4a} xy dy dx.$$
 (05 Marks)

b. Evaluate
$$\iint_{0}^{1} \iint_{0}^{1} (x+y+z) dx dy dz.$$
 (05 Marks)

c. Evaluate
$$\int_{0}^{a} \frac{x^{7} dx}{\sqrt{a^{2} - x^{2}}}$$
 by using reduction formula. (06 Marks)

Module-4

7 a. A particle moves along the curve $x = t^3 + 1$, $y = t^2$, z = 2t + 3 where t is the time. Find the components of velocity and acceleration at t = 1 in the direction of i + j + 3k. (05 Marks)

b. Find div
$$\vec{F}$$
 and curl \vec{F} where $\vec{F} = \text{grad}(x^3 + y^3 + z^3 - 3xyz)$. (05 Marks)

c. Prove that
$$div(curl F) = 0$$
. (06 Marks)

OR

8 a. Find the directional derivative of $f(x, y, z) = xy^3 + yz^3$ at (2, -1, 1) in the direction of i+2j+2k. (08 Marks)

b. Prove that
$$\nabla^2 \left(\frac{1}{r}\right) = 0$$
 where $r = \sqrt{x^2 + y^2 + z^2}$. (08 Marks)

Module-5

9 a. Solve
$$(x^2 - y^2)dx - xy dy = 0$$
. (05 Marks)

b. Solve
$$\left[y \left(1 + \frac{1}{x} \right) + \cos y \right] dx + (x + \log x - x \sin y) dy = 0$$
. (05 Marks)

c. Solve
$$\frac{dy}{dx} - \frac{y}{1+x} = e^{3x}(x+1)$$
. (06 Marks)

OR

10 a. Solve
$$(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$$
. (08 Marks)
b. Solve $(3y + 2x + 4)dx - (4x + 6y + 5)dy = 0$. (08 Marks)
