

18ME33

Third Semester B.E. Degree Examination, Feb./Mar. 2022 Basic Thermodynamics

Time: 3 hrs .
Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
 2. Use of thermodynamics charts and tables are permitted.

$\underline{\text { Module-1 }}$

1 a. Distinguish between:
(i) Macroscopic and microscopic approaches
(ii) Intensive and extensive properties
(10 Marks) Define the following terms:
(i) System
(ii) State
(iii) Property
(iv) Quasi-static process
(v) Thermodynamic cycle
(10 Marks)

OR

2 a. Define Thermodynamic Equilibrium. Also explain Mechanical, Chemical and Thermal equilibrium.
(10 Marks)
b. A constant volume gas thermometer containing helium gives readings of gas pressure ' P ' as 1000 and 1366 mm of mercury at ice point and steam point respectively. Assuming a linear relationship of the form $t=a+b P$, express the gas thermometer celsius temperature ' t ' in terms of gas pressure P . What is the temperature recorded by the thermometer, when it registers a pressure of 1074 mm of mercury?
(10 Marks)

Module-2

3 a. Compare work and heat.
(10 Marks)
b. A fluid contained in a horizontal cylinder fitted with a frictionless leak proof piston is continuously agitated by a stirrer passing through the cylinder cover. The diameter of the cylinder is 40 cm and piston is held against the fluid due to atmospheric pressure equal to 100 kPa . The stirrer turns 7000 revolutions with an average torque of 1 Nm . If the piston slowly moves outwards by 50 cm determine the network transfer to the system.
(10 Marks)

4 a. With a neat diagram, explain Joule's experiments. Also state the first law of thermodynamics.
(10 Marks)
b. A centrifugal compressor delivers $20 \mathrm{~kg} / \mathrm{min}$ of air. Air enters the compressor of $5 \mathrm{~m} / \mathrm{s}$, 100 kPa and leaves at $9 \mathrm{~m} / \mathrm{s}, 600 \mathrm{kPa}$. Heat lost to the surroundings during this process is $10 \mathrm{~kJ} / \mathrm{s}$. If the increase in enthalpy of the fluid is $180 \mathrm{~kJ} / \mathrm{kg}$ and inlet and outlet specific volume of air are $0.5 \mathrm{~m}^{3} / \mathrm{kg}$ and $0.16 \mathrm{~m}^{3} / \mathrm{kg}$ respectively, determine the power of the motor to drive the compressor. Also calculate the ratio of inlet pipe diameter to the outlet pipe diameter. Assume zero elevation difference.
(10 Marks)

Module-3

5 a. Describe the limitations of first law of thermodynamics. Also explain Kelvin-Plank and Clausius statements of second law of thermodynamics with representative diagrams.
(10 Marks)

18ME33
b. Two Carnot engines A and B are connected in series between two thermal reservoirs maintained at 1000 K and 100 K respectively. Engine A receives 1680 kJ of heat from high temperature reservoir and rejects heat to the Carnot engine B. Engine B takes in heat rejected by engine A and reject heat to the low temperature reservoir. If engines A and B have equal thermal efficiencies, determine:
(i) The heat rejected by engine B.
(ii) Temperature at which heat is rejected by engine A .
(iii) Work done by engine A and B .
(10 Marks)

OR

6 a. Define entropy and explain the principle of increase of entropy.
(10 Marks)
b. A closed system contains air at pressure 1 bar , temperature 290 K and volume $0.02 \mathrm{~m}^{3}$. This system undergoes a thermodynamic cycle consisting of the following three process:
Process 1-2: Constant volume heat addition till pressure becomes 4 bar.
Process 2-3: constant pressure cooling.
Process 3-1: Isothermal heating to initial state. Evaluate the change in entropy for each process. Take $\mathrm{C}_{\mathrm{V}}=0.718 \mathrm{~kJ} / \mathrm{kgK}, \mathrm{R}=287 \mathrm{~J} / \mathrm{kgK}$. Also represent the cycle on T-S and $\mathrm{P}-\mathrm{V}$ plot.
(10 Marks)

Module-4

7 a. Explain the concept of availability and unavailable energy by deducing suitable relevant equation.
(10 Marks)
b. Superheated steam at 40 bar and $300^{\circ} \mathrm{C}$ expands to 4 bar and 0.97 dry in a turbine. Determine: (i) Availability
(ii) Actual work done
(iii) Loss in availability. Assume $\mathrm{t}_{0}=28^{\circ} \mathrm{C}$.

OR

8 a. Draw and explain the salient features of P-T diagram with water as an example. (08 Marks)
b. The following data were obtained with a separating and throttling calorimeter pressure in steam main $=15$ bar, mass of water drained from the separator $=0.55 \mathrm{~kg}$. Mass of steam condensed after passing through the throttle valve $=4.20 \mathrm{~kg}$. Pressure and temperature after throttling is 1 bar and $120^{\circ} \mathrm{C}$. Evaluate the dryness fraction of steam in the main. ($\mathbf{1 2}$ Marks)

Module-5

9 a. Define and explain Dalton's law of partial pressures and Amagat's law of additive volumes.
(10 Marks)
b. It is required to evacuate hydrogen gas from a $8 \mathrm{~m}^{3}$ capacity tank form atmospheric pressure of 101.325 kPa to a pressure of 98.125 kPa vacuum at 400 K . Determine the mass of Hydrogen pumped out and pressure in kPa if the temperature of hydrogen left in the tank falls to 290 K .
(10 Marks)

OR

10 a. Define and explain: (i) Dew Póint temperature (ii) Relative humidity (iii) Humidity ratio (iv) Wet Bulb temperature (v) Degree of saturation
b. One kg of carbon monoxide has a volume of $2 \mathrm{~m}^{3}$ at $80^{\circ} \mathrm{C}$. Determine its pressure using:
(i) Ideal gas equation
(ii) Vander Waal's equation

Constants for Vander Waal's equations:
$\mathrm{a}=147.90 \mathrm{kN}-\mathrm{m}^{4} /(\mathrm{kgmol})^{2}$ and $\mathrm{b}=0.0393 \mathrm{~m}^{3} / \mathrm{kgmol}$.
(10 Marks)

