

USN	

10EC763

(08 Marks)

Seventh Semester B.E. Degree Examination, Dec.2017/Jan.2018 Image Processing

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- 1 a. With the help of neat block diagram, explain the components of a general purpose image processing system. (08 Marks)
 - b. With a neat block diagram explain the fundamental steps involved in digital image processing.

 (12 Marks)
- 2 a. Explain the image acquisition using single sensor. (06 Marks)
 - b. Consider the image segment shown in Fig Q2(b). Set $V = \{0, 1\}$, compute the lengths of shortest 4, 8 and m path between p and q. If path does not exists between p and q, explain why?

- c. Explain the role of sampling and quantization with an example.
- 3 a. For the 2 × 2 orthogonal matrix A and image U obtain the transformed image and basis images and inverse transformation.

$$A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad U = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}. \tag{06 Marks}$$

- b. Explain the following properties of unitary transform.
 - i) Energy conservation
 - ii) Decorrelation. (06 Marks)
- c. Define 2-D forward and inverse discrete cosine transform and mention its properties.

 (08 Marks)
- 4 a. Using the core matrix H₁ generate hadamard transform matrix H₃ and explain 4 properties of hadamard transform. (10 Marks)
 - b. Define slant transform. Obtain 4×4 slant transformation matrix. Explain any four properties of slant transform. (10 Marks)

10EC763

PART - B

- 5 a. Explain the following intensity transformation functions with necessary graphs.
 - i) Image negatives
 - ii) Log transformations
 - iii) Power law (Gamma) transformations.

(10 Marks)

b. Perform histogram equalization of an image whose pixel intensity distribution is given in table:

Gray levels	0	1	2	3	4	5	6	7
Number of Pixels	790	1023	850	656	329/	245	122	81

Construct the histogram of the image before and after equalization.

(10 Marks)

- 6 a. Explain the smoothing of images in frequency domain using:
 - i) Ideal lowpass filter
 - ii) Butterworth lowpass filter.

(10 Marks)

- b. With the help of a block diagram, explain the homomorphic filtering approach for image enhancement. (10 Marks)
- 7 a. Explain the model of image degradation/restoration. List all noise probability density functions and explain any three with necessary equations and graphs. (10 Marks)
 - b. Explain inverse filtering and Weiner filtering in image processing.

(10 Marks)

8 a. Explain briefly any two color models. Write equations for converting RGB to HSI.

(10 Marks)

b. Write a note on Pseudo color image processing. Explain intensity slicing as applied to pseudo color image processing. (10 Marks)

* * * * *