

18EC34

Third Semester B.E. Degree Examination, Jan./Feb. 2021 Digital System Design

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

1 a. Design a logic circuit that has 4 inputs, the output will be high, when the majority of the inputs are high. Use K-map to simplify.
(07 Marks)
b. Express the following functions into canonical form:
(i) $f_{1}=a b^{\prime}+a b^{\prime}+b c$
(ii) $f_{2}=\left(a+b^{\prime}\right)\left(b^{\prime}+c\right)$
(06 Marks)
c. Identify all the prime implicants and essential prime implicants of the following using K-map.
i) $f(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\Sigma \mathrm{m}(6,7,9,10,13)+\mathrm{dc}(1,4,5,11,15)$
ii) $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\pi \mathrm{M}(1,2,3,4,9,10)+\operatorname{dc}(0,14,15)$
iii) $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,2,4,5,6,7,8,10,13,15)$
(07 Marks)

OR

2 a. Simplify the following using tabulation methods:
$\mathrm{Y}=\Sigma \mathrm{m}(1,2,3,5,9,12,14,15)+\Sigma \mathrm{d}(4,8,11)$
(07 Marks)
b. Simplify the following expression using K-map. Implement the simplified expression using NAND gates only. $\mathrm{F}=\Sigma \mathrm{m}(0,1,2,5,6,7,8,9,10,13,14,15)$.
(07 Marks)
c. Explain briefly K-map, incompletely specified functions, essential prime implicants and gray codes.
(06 Marks)

Module-2

3 a. Design a two bit magnitude comparator.
(10 Marks)
b. Realize the following functions expressed in maxterm canonical form in two possible ways using $3: 8$ decodes. $\mathrm{f}_{1}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\pi \mathrm{M}(1,2,6,7)$ and $\mathrm{f}_{2}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\pi \mathrm{M}(1,3,6,7)$
(10 Marks)

OR

4 a. Implement $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\operatorname{m}(0,1,5,6,7,9,10,15)$, using;
(i) $8: 1$ mux with $\mathrm{a}, \mathrm{b}, \mathrm{c}$, as select lines (ii) $4: 1$ mux with a, b as select lines.
(08 Marks)
b. Explain 4-bit carry look-ahead adder with necessary diagram and relevant expressions.
(04 Marks)
c. Draw a PLA circuit to implement the logic function $\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{AC}^{\prime}$ and $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{BC}$.
(08 Marks)

Module-3

5 a. Explain with timing diagrams the workings of SR latch as a switch debouncer.
(08 Marks)
b. What is race around condition? Explain JK Master Slave flipflop with a diagram, function table and timing diagram.
(07 Marks)
c. List the difference between combinational and sequential circuits.
(05 Marks)

OR

6 a. Explain the operation of clocked SR flipflop using NAND gates.
(07 Marks)
b. What is the significance of Edge Triggering? Explain the working of positive edge triggered D-FF with their function table.
(07 Marks)
c. Explain the working of 4-bit twisted ring counter using necessary diagram and logic table.
(06 Marks)

Module-4

7 a. Using positive edge triggering SR flipflops design a counter which counts in the following sequence: $000,111,110,101,100,011,010,001,000 \ldots$
(10 Marks)
b. Design a synchronous mod-6 counter using D-flipflop to generate the sequence ($0,2,3,6,5,1,0$)
(10 Marks)

OR

8 a. Write the difference between Mealy and Moore model with necessary diagrams.
(10 Marks)
b. Explain state machine notations with an example.

Module-5

9 a. Construct Mealy state diagram that will detect input sequence 10110, when input pattern is detected, Z is asserted high. Give state diagram for each state.
b. With necessary diagram, explain the concept of serial adder with accumulators.

OR

10 a. Design a sequential circuit to convert BCD to excess 3 code.
(10 Marks)
b. Explain the design of sequential circuit using CPLD's and give CPLD implementation of a shift register and parallel adder with accumulator.
(10 Marks)

