18EC32
USN

Third Semester B.E. Degree Examination, Jan./Feb. 2021 Network Theory

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Using source transformation and source shifting techniques, find voltage across 2Ω resistor as shown in Fig.Q.1(a).
(07 Marks)

b. For the network shown in Fig.Q.1(b), find the equivalent resistance between A and B using Star-Delta transformation.
(05 Marks)

Fig.Q.1(b)

c. Determine the node voltages V_{1} and V_{2} by nodal analysis for the network in Fig.Q.1(c).
(08 Marks)

Fig.Q.1(c)

2 a. Find the potential difference between M and N using source transformation, for the network shown in Fig.Q.2(a).
(05 Marks)

Fig.Q.2(a)

b. Find V_{x} using nodal analysis for the network shown in Fig.Q.2(b).
(08 Marks)

Fig.Q.2(b)

c. Determine V_{0} using mesh analysis for the network shown in Fig.Q.2(c).
(07 Marks)

Fig.Q.2(c)

Module-2

3 a. State and prove Millman's theorem.
(06 Marks)
b. Find the current through Z_{3} ûsing superposition theorem for the network shown in Fig.Q.3(b).
(10 Marks)

Fig.Q.3(b)

c. Find the value of Z_{L} for which maximum power transfer occurs in the network shown in Fig.Q.3(c).
(04 Marks)

Fig.Q.3(c)

4 a. Obtain Thevenin's and Norton's equivalent circuit at terminals AB for the network shown in Fig.Q.4(a). Hence, find the current through 10Ω resistor across $A B$.
(12 Marks)

b. Find the value of R_{L} for which maximúm power is delivered. Also find the maximum power that is delivered to the load R_{L}. Refer Fig.Q.4(b).
(08 Marks)

Fig.Q.4(b)

Module-3

5 a. In the given network Fig.Q.5(a), K is closed at $t=0$, with zero current in the inductor. Find the values of $\mathrm{i}, \frac{\mathrm{di}}{\mathrm{dt}}$ and $\frac{\mathrm{d}^{2} \mathrm{i}}{\mathrm{dt}^{2}}$ at $\mathrm{t}=0^{+}$.
(05 Marks)

Fig.Q.5(a)

b. In the network Fig.Q.5(b), the switch is moved from position 1 to position 2 at $t=0$. The steady-state has been reached before switching. Calculate i, $\frac{\mathrm{di}}{\mathrm{dt}}$ and $\frac{\mathrm{d}^{2} \mathrm{i}}{\mathrm{dt}^{2}}$ at $\mathrm{t}=0^{+}$. (07 Marks) Fig.Q.5(b)

c. In the network Fig.Q.5(c), the switch K is opened at $t=0$. At $t=0^{+}$, solve for $v, \frac{d v}{d t}$ and $\frac{\mathrm{d}^{2} \mathrm{v}}{\mathrm{dt}^{2}}$.

Fig.Q.5(c)

a. For the circuit shown in Fig.Q.6(a), steady state is reached with switch K open. The switch is closed at $t=0$. Find $i_{1}, i_{2}, \frac{d i_{1}}{d t}$ and $\frac{d i_{2}}{d t}$ at $t=0^{+}$.

Fig.Q.6(a)

b. For the circuit in Fig.Q.6(b). Find:
i) $\quad \mathrm{v}\left(0^{+}\right)$and $\mathrm{i}\left(0^{+}\right)$
ii) $\frac{\mathrm{dv}\left(0^{+}\right)}{\mathrm{dt}}$ and $\frac{\mathrm{di}\left(0^{+}\right)}{\mathrm{dt}}$
iii) $v(\infty)$ and $i(\infty)$.
(10 Marks)

Fig.Q.6(b)

Module-4

7 a. Determine the current $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$ for $\mathrm{t} \geq 0$ for the circuit in Fig.Q.7(a).
(10 Marks)

Fig.Q.7(a)

b. Find the Laplace transform of the function $f(t)$ shown in Fig.Q.7(b).
(10 Marks)

Fig.Q.7(b)

OR
8 a. Determine the voltage $\mathrm{v}_{\mathrm{c}}(\mathrm{t})$ and the current $\mathrm{i}_{\mathrm{c}}(\mathrm{t})$ for $\mathrm{t} \geq 0$ for the circuit shown in Fig.Q.8(a).
(10 Marks)

Fig.Q.8(a)

b. Find the Laplace transform of $f(t)$ shown in Fig.Q.8(b).
(10 Marks)

Fig.Q.8(b)

Module-5
9 a. Express Y parameters in terms of h-parameters.
(06 Marks)
b. Find Z-parameters for the network shown in Fig.Q.9(b).

Fig.Q.9(b)

c. The Z-parameters of a two port network are $z_{11}=20 \Omega, z_{22}=30 \Omega, z_{12}=z_{21}=10 \Omega$. Find Y and ABCD parameters of the network.
(08 Marks)

OR

10 a. Prove that the resonant frequency is the geometric mean of the two half power frequencies.
(06 Marks)
b. A series RLC circuit has $\mathrm{R}=10 \Omega, \mathrm{~L}=0.01 \mathrm{H}$ and $\mathrm{C}=0.01 \mu \mathrm{~F}$ and it is connected across
10 mv supply. Calculate: i) f_{0}
ii) Q_{0}
iii) bandwidth
iv) f_{1} and f_{2}
v) I_{0}.
(06 Marks)
c. Find the value of R_{1} such that the circuit shown in Fig.Q.10(c) is resonant.

Fig.Q.10(c)

