

1 of 4

Fig Q2(c)

(10 Marks)

Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be treated as malpractice. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Module-2

- **3** a. State and explain Millman's theorem for AC circuit.
 - b. Use superposition on the circuit shown in Fig Q3(b) to find the current i_x .

Fig Q3(b)

(05 Marks)

c. Use Norton's theorem for the circuit of Fig Q3(c) to determine the power absorbed by the 20Ω resistor.

(10 Marks)

OR

- 4 a. State and prove maximum power transfer theorem for AC voltage source with internal impedance connected to variable impedance (06 Marks)
 - b. Verify reciprocity theorem for the circuit of Fig Q4(b).

(04 Marks)

c. For the circuit of Fig Q4(c), what value of R_L will absorb a maximum average power, and what is the value of this power?

(10 Marks)

Module-3

- 5 a. Explain the behavior of R, L and C elements for transients. Mention their representation at $t = 0^+$ (06 Marks)
 - b. In the network of the Fig Q5(b), is in the steady state with the switch K closed. At t = 0, the switch is opened. Find the values of v_1 , v_2 , $\frac{dv_1}{dt}$ and $\frac{dv_2}{dt}$ at t = 0⁺.

(08 Marks)

(05 Marks)

c. Find the Laplace transform of the waveform shown in Fig Q5(c)

(06 Marks)

6 a. In the network of the Fig Q6(a), a steady state is reached with the switch K open. AT time t = 0, the switch is closed. Find the values of i_1 , i_2 , $\frac{di_1}{dt}$ and $\frac{di_2}{dt}$ at $t = 0^+$.

(10 Marks)

b. In the network of the Fig Q6(b), the switch K is closed at t = 0 a steady state having previously excited. Draw the transform network and find the current i(t), using the Laplace transformation method.

- 7 a. In a series resonant circuit, show that resonant frequency is equal to the geometric mean of half-power frequencies. (06 Marks)
 - b. An R-L-C series circuit of 8Ω resistance should be designed to have a bandwidth of 50Hz. Determine the values of L and C, so that the system resonates at 250Hz. Also determine the half power frequencies. (06 Marks)
 - c. For the network shown in Fig Q7(c), determine the value of C at which it resonates when f = 100Hz. Also find the values of R_L and R_C at which the circuit resonates at all frequencies.

(08 Marks)

- 8 a. Define the following terms pertaining to a series R-L-C circuit, i) Resonance ii) Quality factor iii) Bandwidth iv) Selectivity. (04 Marks)
 - b. A series R-L-C circuit with an input voltage 5 <u>0°</u> V resonates at a frequency of 8400Hz. The peak value of current is 500mA at resonance and the bandwidth is 120Hz. Determine the values of R, L, C and cut-off frequencies. (06 Marks)
 - c. For the network shown in Fig Q8(c), determine: i) Resonance frequency ii) Input admittance iii) Quality factor iv) Bandwidth and v) half power frequencies.

(10 Marks)

9 a. Obtain Y-parameters in terms of z-parameters.

(06 Marks)

b. Find hybrid parameters for the two part shown in Fig Q9(b). What value of K in the two-part of figure shown will produce reciprocal network.

Module

Fig Q9(b)

(06 Marks)

c. Determine the ABCD parameters for the network of Fig Q9(c).

- 10 a. Explain h-parameters with equivalent circuit. Also obtain t-parameters in terms of h-parameters and hence show that AD BC = 1. (10 Marks)
 - b. Find the Z-parameters and the Y-parameters for the network of Fig Q10(b)

