

15EC36

Third Semester B.E. Degree Examination, June/July 2019 **Engineering Electromagnetics**

Time: 3 hrs.

USN

Max. Marks: 80

(10 Marks)

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Four point charges each 20µc are on x-y axes at ± 4m. find the force on a 100µc point 1 charge at (0, 0, 3)m.
 - Define electric field intensity (E) and using Coulomb's law derives the expression for É due to a point charge.
 - A line charge of density $\rho_1 = 24$ n c/m is located in free space on the line y = 1, z = 2. Find electric filed intensity E at P(6, -1, 3). (06 Marks)

- Derive an expression for Electric field Intensity E due to an infinite line charge of density
 - b. A point charge of 6µc is located at origin and a uniform line charge of density 180nc/m lies along x - axis,
 - i) Find electric flux density D at (1, 2, 4)
 - ii) Calculate the total electric flux leaving the surface of a sphere of 4m radius centered at origin. (08 Marks)

Module-2

- A charge of Q coulombs is uniformly distributed throughout the volume of a sphere of radius 'R' meters. Using Gauss law Find electric field intensity 'E' everywhere. Plot the variation of E with radial distance.
 - Given that $D = \frac{5r^2}{4}a_r$ in spherical co-ordinates evaluate both sides of Divergence Theorem for the volume enclosed between r = 1m and r = 2m. (08 Marks)

- Find the work done in moving a 5 μ c point charge from origin to p(2, -1,4) through $E = 2xyz ax + x^2z a_y + x^2y a_z v/m$ via the path
 - i) Straight line segment (0, 0, 0) to (2, 0, 0) to (2, -1, 0) to (2, -1, 4)
 - ii) Straight line x = -2y, z = 2x.
 - Given potential function $V = 50x^2yz + 20y^2 V$ in free space find
 - i) Voltage at p(1, 2, -3)
 - ii) E at P
 - (06 Marks) iii) a_N at P

Module-3

- 5 a. Using Laplace Equation derive the expression for capacitance of co-axial cylindrical capacitor. Assume the potential is a function of ' ρ ' only. The boundary condition are V = 0 at $\rho = b$ and $V = V_0$ at $\rho = a$ (08 Marks)
 - b. Conducting planes at $\phi = 10^{\circ}$ and $\phi = 0^{\circ}$ in cylindrical co-ordinates have voltages of 75V and 0 V respectively. Obtain the expression for Electric flux density 'D' in the region between the planes which contains a material for which $E_r = 1.65$. (08 Marks)

OR

- 6 a. Using Biot Savart's law derive an expression for magnetic field intensity 'H' due to an infinite current carrying conductor at any point P. (08 Marks)
 - b. In cylindrical co-ordinates magnetic field $H = (2\rho \rho^2)$ at A/m. for $0 \le \rho \le I$.

i) Determine current density 'J'

ii) What total current passes through a surface z = 0, $0 \le \rho \le 1$.

(08 Marks)

(06 Marks)

Module-4

7 a. Derive Lorentz force equation for a moving charge in both electric and magnetic fields.
(04 Marks)

b. The point charge Q = 18nc has a velocity of 5×10^6 m/s in the direction $q_v = 0.60 a_x + 0.75 a_v + 0.30 a_z$. Calculate magnetic force exerted on the charge by

i) B = -3ax + 4ay + 6az MT

ii) E = -3ax + 4ay + 6az KV/m (06 Marks)

c. The magnetization in a magnetic material for which $\chi_m = 8$ is given in a certain region as $150z^2$ a_x A/m. At z = 4cm, find the magnitude of J and J_b. (06 Marks)

OR

- 8 a. Derive the expression for boundary conditions for magnetic flux density B, magnetic field intensity H and magnetization M for both normal and tangential field. (08 Marks)
 - b. Let $\mu_1 = 5 \,\mu\text{H/m}$ in region A where x < 0 and $\mu_2 = 20 \,\mu\text{H/m}$ in region B where x > 0. If there is a surface current density K = 150 a_y -200 a_z A/m at x = 0 and if $H_A = 300$ a_x -400a_y +500a_z A/m find (i) $|H_{tA}|$ (ii) $|H_{NA}|$ (iii) $|H_{tB}|$ (iv) $|H_{NB}|$ (08 Marks)

Module-5

- 9 a. What was the inconsistency of Ampere's law with continuity equation? How was it modified by Maxwell? (06 Marks)
 - b. Show that the displacement current in the dielectric of parallel plate capacitor is equal to conduction current between the two plates. (04 Marks)
 - c. Given $E = E_m Sin(wt \beta z) a_v V/m$ in free space find, D, B and H.

OR

10 a. Show that the intrinsic impedance defined as $\eta = \frac{|E|}{|H|}$ is equal to $\sqrt{\frac{\mu}{\epsilon}}$ for a perfect dielectric and hence prove that for free space $\eta = 377\Omega$.

and hence prove that for free space $\eta = 377\Omega$. b. A wave propagation in a lossless dielectric has the components

E = 500 Cos (10^{7} t – β z) a_x V/m

 $H = 1.1 \cos (10^7 t - \beta z) a_y A/m$

If the wave is travelling at v = 0.5C, where 'C' is velocity of light in free space find μ_r , ϵ_r , β , λ . (08 Marks)