Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be

CBCS SCHEME

USN					

15EC35

Third Semester B.E. Degree Examination, June/July 2018 Electronic Instrumentation

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

- a. Briefly explain Gross Errors, Absolute error and relative error with examples. (05 Marks)
 - b. Draw the block diagram of a true RMS voltmeter and explain its operation. (05 Marks)
 - c. Design a multirange ammeter using Aryton Shunt for the ranges 0-10 mA, 100 mA and 1 A, using a D'Arsonval movement having internal resistance of 1 K Ω and a full scale current of 100 μ A. (06 Marks)

OR

- a. Sketch and explain the operation of a multirange ammeter using Aryton shunt. (05 Marks)
 - b. A resistor of 1 K Ω with an accuracy of $\pm 5\%$, carries a current of 10 mA. The current is measured with an ammeter of 30 mA full scale with an accuracy of $\pm 2\%$ at full scale. Calculate the power dissipiation in the resistor and the accuracy of the power measurement. (05 Marks)
 - C. What is the loading effect of a voltmeter of low sensitivity? A voltage of 100 V dc is applied across a series combination of two resistors R1 and R2 each of 10 K Ω . A voltmeter of sensitivity 1 K Ω /V is used to measure the voltage across R2 in the range of 50 V. Calculate the voltmeter reading and percentage error of reading. (06 Marks)

Module-2

- 3 a. Describe with diagram the operation of a Ramp type DVM. What are its limitations?
 - b. (i) With the help of a block diagram, explain the operation of a digital time period measurement instrument.
 - (ii) The lowest range of a $4\frac{1}{2}$ digit DVM is 10 mV full scale. Determine its sensitivity.

(08 Marks)

OR

- 4 a. Describe with diagram, the operation of a successive approximation type DVM. (08 Marks)
 - b. (i) With the help of abjock diagram, explain the operation of a digital capacitance meter.
 - (ii) What are the outstanding characteristics of a DVM?

(08 Marks)

Module-3

- 5 a. Draw the block diagram of a simple CRO and state the functions of each block. What is the advantage of using -ve HV supply in CRO? (08 Marks)
 - b. Explain with the help of a block diagram of a function generator, how it generates the different waveforms. (08 Marks)

OR

(i) Describe the operation of a digital storage oscilloscope with the help of a block diagram. 6

(ii) The number of vertical and horizontal tangencies of a Lissajous figure are 2 and 6 respectively. What is the frequency of the signal connected to vertical plates, if horizontal plate signal frequency is (RHZ).

Sketch the block diagram of a square and pulse generator and describe how it generates the square waveform and pulses.

Module-4

Explain with diagram the working of a phase sensitive detector. 7

(08 Marks)

What is the principle of working of a stroboscope? b. Draw the circuit of a Wheatstone's bridge and explain how it can be used to measure an (05 Marks) unknown resistance

If the two arms of a Wheatstone's Bridge are $R_1 = 1 \text{ K}\Omega$ and $R_2 = 10 \text{ K}\Omega$. Find the range of the third arm resistance R_3 to be used to measure unknown resistance R4 of the range 1 $K\Omega$ (03 Marks) to 100 KQ in the fourth arm.

OR

Define Q factor. With diagram, explain the operation of a Q meter to measure Q and (08 Marks) inductance of a coil.

Draw the diagram of a Maxwell's Bridge and obtain the equations to measure Rx, Lx and Q.

(05 Marks)

A Maxwell's Bridge has components values at balance as $C_1 = 0.01 \mu F$, $R_1 = 470 \text{ K}\Omega$, $R_2 = 5.1 \text{ K}\Omega$, $R_3 = 100 \text{ K}\Omega$. Find the value of the inductive impedance connected in the (03 Marks) fourth arm (Rx and Lx).

Module-5

Explain the operation of a resistive position transducer.

(05 Marks)

b. Describe with diagram the operation of a piezo electric transducer

(05 Marks)

With circuit diagram, explain the operation of a LVDT the method of measuring (06 Marks) displacement.

Explain with diagram the construction of a Bonded Resistance wire gauge. How does 10 a. it senses strain/stress?

How it is used in a bridge arrangement with a dummy gauge and what is the (08 Marks) advantages of such an arrangement?

Briefly explain the construction and operation of a photoconductive cell and a photo (04 Marks) transistor.

With a circuit explain how a photo transistor can be used to operate a street light relay.

(04 Marks)