CBCS SCHEME

First Semester B.E. Degree Examination, Dec.2018/Jan.2019 **Engineering Mathematics – I**

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find
$$y_n$$
 if $y = \frac{1}{x^2 - 5x + 6}$.

(06 Marks)

b. Find the angle between the curves $r = a(1+\cos\theta)$ $r^2 = a^2 \cos 2\theta$

(05 Marks)

c. Find the radius of curvature for the curve $y^2 = \frac{4a^2(2a-x)}{x}$ where the curve meets x-axis.

(05 Marks)

(05 Marks)

- a. If x = Sint y = Cosmt prove that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} + (m^2 n^2)y_n = 0$ b. Find the Pedal equation of the curve $r^m = a^m(Cosm\theta + Sinm\theta)$ (06 Marks)
 - (05 Marks)
 - Show that for the curve $r(1 \cos\theta) = 2a \rho^2$ varies as r^3 .

- a. Obtain the Taylor's expansion of $\tan^{-1}x$ in powers of x-1 up to the term containing fourth (06 Marks)
 - b. Evaluate $\lim_{x\to 0} \left(\frac{1}{x^2} \cot^2 x \right)$. (05 Marks)
 - c. If $z = x^2 \tan^{-1} \left(\frac{y}{x} \right) y^2 \tan^{-1} \left(\frac{x}{y} \right)$ show that $\frac{\partial^2 z}{\partial x \partial y} = \frac{x^2 y^2}{x^2 + y^2}$. (05 Marks)

- a. Using Maclaurin's series prove that $\sqrt{1 + \sin 2x} = 1 + x \frac{x^2}{2} + \frac{x^4}{24} + \dots$ (06 Marks)
 - b. If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$ prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$. (05 Marks)
 - c. If $u = \sqrt{x_1 x_2}$ $v = \sqrt{x_2 x_3}$ $w = \sqrt{x_3 x_1}$ find $J\left(\frac{u, v, w}{x_1 x_2 x_3}\right)$. (05 Marks)

Module-3

- a. A particle moves along a curve whose parametric equations are $x = e^{-t}$, $y = 2 \cos 3t$, $z = 2 \sin 3t$ where t is the time. Find the velocity and acceleration at any time t and also their magnitudes at t = 0. (05 Marks)
 - b. Find div \vec{F} and curl \vec{F} where $\vec{F} = \nabla (x^3 + y^3 + z^3 3xyz)$ (05 Marks)
 - Show that F = (y + z)i + (z+x)j + (x+y)k is irrotational. Also find a scalar potential such that (06 Marks)

OR

- If $\vec{F} = (3x^2y z)i + (xz^3 + y^4)j 2x^3z^2k$ find grad (div \vec{F}) at (2, -1, 0)(06 Marks)
 - Show that $\overrightarrow{F} = \frac{xi + yj}{x^2 + y^2}$ is both solenoidal and irrotational. (05 Marks)
 - Prove curl (grad ϕ) = 0 for any scalar function ϕ . (05 Marks)

- Obtain reduction formula for $\int_{-\infty}^{\pi/2} \sin^n x dx$ where n is a positive integer. (06 Marks)
 - Evaluate $\int \cos^4 3x \sin^2 6x \, dx$ using reduction formula. (05 Marks)
 - c. Solve $\frac{dy}{dx} + \frac{y \cos x + \sin y + y}{\sin x + x \cos y + x} = 0$. (05 Marks)

OR

- Obtain reduction formula for \[\cap \cos^n x dx \] where n is a positive integer. (06 Marks)
 - Obtain the orthogonal trajectory of the family of curves $r = a(1+Sin\theta)$ (05 Marks)
 - If the temperature of the air is 30°C and metal ball cools from 100°C to 70°C in 15 minutes, find how long will it take for the metal ball to reach temperature of 40°C. (05 Marks)

Find the rank of the matrix $A = \begin{bmatrix} 2 & \frac{\text{Module-5}}{-1 & -3 & -1} \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$. (06 Marks)

- b. Solve by Gauss Jordan method 2x + 5y + 7z = 52, 2x + y z = 0, x + y + z = 9. (05 Marks)
- c. Find the largest eigen value and the corresponding eigen vector by power method given that
 - 3 -1 by taking the initial approximation to the eigen vector as $[1 0.8, -0.8]^1$.

(05 Marks)

- a. Use Gauss seidel method to solve the equations x + y + 54z = 110, 27x + 6y - z = 85, 6x + 15y + 2z = 72. (06 Marks)
 - Reduce the matrix to diagonal form $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$ and hence find A^4 . (05 Marks)
 - Reduce the quadratic form $8x^2 + 7y^2 + 3z^2 12xy + 4xz 8yz$ into canonical form. (05 Marks)