

10CV65

Sixth Semester B.E. Degree Examination, Dec.2017/Jan 2018 Hydraulic Structures and Irrigation Design Drawing

Time: 4 hrs.

Max. Marks: 100

Note: 1. Answer any FWO full questions form PART A and ONE question from PART B

- 2. Draw neat diagram wherever necessary
- 3. Missing data may suitably be assumed.

PART-A

a. Define: i) Yield, ii) Trap efficiency iii) Density currents.

(03 Marks)

b. The construction cost for certain possible heights of dam at a given site have been estimated and are given in table, along with storage capacity at these heights. Determine the most economical height of dam:

Height (m)	10	20	30	40	50	60	65
Construction cost (million Rs.)	40	8	12	18	27	39	50
Storage (million cum)	50	110	180	250	350	500	600

(05 Marks)

Explain briefly environmental effects of construction of a reservoir.

(07 Marks)

What are the modes of failure of gravity dam? Explain. 2

(07 Marks)

b. Design the practical profile of a gravity dam of stone masonry, given the following data:

RL of base of dam = 1250.00m

RL of FRL 1280.00m

Height of wave 1.5m

Safe compressive strength 1200kN/m²

Specific gravity

Sketch the profile.

(08 Marks)

List the design criteria for earth dams.

(07 Marks)

Explain the steps in fixing the preliminary dimensions of an earth dam.

(08 Marks)

PART - B

Design a surplus weir with stepped apron of a tank with the following details

Catchment area 20km^2

Maximum water level 124.000m

Full tank level 123.000m

Ground level at weir site 122.000m

Shelow proposed weir upto a reach of 5m 121.000m 125.500m

Tank bund level

Top width of tank bund 2.0m

Side slopes of bund on either side 2H:1V

Hard foundation available at 120.000m

Ryve's coefficient 9

Hydraulic gradient 1:5

(25 Marks)

10CV65

Draw to a suitable scale:

Half plan at top and half plan at foundation.

(20 Marks) (15 Marks)

Half elevation and half sectional elevation.

Cross section across the weir.

(10 Marks)

Design details of a canal regulator is as follows: 5

d/s Particulars us $13 \text{m}^3/\text{s}$ $16m^3/s$ Full supply discharge 10m 10m Bed width 12.000m 11.500m Full supply level 13.000m 12.500m Top level of Bank 10.000m 10.000m Canal bed level 2m 2mTop width of bank 2H:1V 2H:1V Canal side slopes

Bligh's coefficient = 10

General GL at the site = 12.00m

Good soil for foundation is at 9.000m

Design Ventway, Gates, Apron, and Protection works (25 Marks)

Draw to a suitable scale:

Half plan at top and half plan at foundation.

(20 Marks)

Half elevation and half sectional elevation.

(15 Marks)

Sectional elevation through regulator vent.

(10 Marks)