

10CV65

USN

## Sixth Semester B.E. Degree Examination, Dec.2015/Jan.2016 Hydraulic Structures & Irrigation Design Drawing

Time: 4 hrs.

Max. Marks: 100

Note: 1. Answer any TWO full questions from Part-A and any ONE question from Part-B.

2. Assume any missing data suitably.

## PART-A

1 a. Explain different storage zones of a reservoir.

(04 Marks)

b. Define the terms density currents and economic height of a dam.

(04 Marks)

c. A proposed reservoir has capacity of 500 ha-m. The catchment area is 125 km² & the annual stream flow averages 120 mm of runoff. If the annual sediment production is 0.03 ha-m/km², what is the probable life of the reservoir before its capacity is reduced to 10% of its initial capacity by sedimentation? The relationship between trap efficiency (η%) and capacity inflow ratio C/I is as follows:

0.5 0.7 0.06 0.2 0.3 C/I 0.01 | 0.02 0.04 0.1 97 87 93 95 96 74 80 43 60 n%

2 a. Define Gravity dam with a neat sketch. Explain the various forces acting on Gravity dam.

(08 Marks)

b. Determine the maximum & minimum vertical stresses to which the foundation of the dam will be subjected from the following data:

Total over turning moment about toe,  $\Sigma M_c = 1.2 \times 10^6 \text{ kN-m}$ 

Total resisting moment about toe,  $\Sigma M_p = 2.5 \times 10^6 \text{ kN-m}$ 

Total vertical force about toe  $\Sigma V = 6 \times 10^4 \text{ kN}$ 

Base width of the dam = 55 m

Slope of d/s face = 0.8:1

Also calculate the maximum principal stress at the toe. Neglect tail water depth. (07 Marks)

3 a. Explain different types of earthen dams with neat sketches.

(06 Marks)

b. Explain the causes for failure of earthen dam.

(09 Marks)

## PART-B

Design a canal drop (Notch type) for the following particulars:

(25 Marks)

| Particulars             | U/s Canal                 | d/s canal                 |
|-------------------------|---------------------------|---------------------------|
| Full supply discharge   | $10 \text{ m}^3/\text{s}$ | $10 \text{ m}^3/\text{s}$ |
| Bed level               | +120.0 m                  | +118.0 m                  |
| Full Supply level       | +121.5 m                  | +119.5 m                  |
| Bed width               | 8.0 m                     | 8.0 m                     |
| Top level of embankment | +122.5 m                  | +120.5 m                  |
| Top width of embankment | 2.0 m                     | 2.0 m                     |
| Side slopes             | 1:1 (Cut)                 | 1.5 : 1 (Fill)            |
| Average Ground level    | 120.5 m                   | 120.5 m                   |

Hard soil is available at 118.5 m.

Draw to a suitable scale:

(i) Half plan at top & half at foundation.

(ii) Half elevation & half longitudinal section

(15 Marks)

(20 Marks)

(iii) Cross-section along the canal.

(10 Marks)



10CV65

## 5 Design details of a canal regulator is as follows:

| Particulars           | U/s                         | d/s                         |
|-----------------------|-----------------------------|-----------------------------|
| Full supply discharge | $18.0 \text{ m}^3/\text{s}$ | $15.0 \text{ m}^3/\text{s}$ |
| Bed width             | 12 m                        | 12 m                        |
| Full Supply level     | +12.0 m                     | +12.0 m                     |
| Top Bank level        | +13.0 m                     | + 13.0 m                    |
| Bed level             | +10 m                       | +10.0 m                     |
| Top width of bank     | 2.0 m                       | 2.0 m                       |
| Side slopes           | 2:1                         | 2:1                         |

Bligh's coefficient = C = 10

General Ground Level at the site+12.0 m

Good soil for foundation is available at + 9.0 m

Splayed wingwalls are to be provided.

Design the Vent way, Gates, Apron & Protection works

Draw to suitable scale, the following views:

(i) Half longitudinal section & half longitudinal elevation.

(ii) Half plan at top & half at foundation.

(iii) Sectional elevation through regulator vent.

(25 Marks)

(20 Marks)

(15 Marks)

(10 Marks)

\*\*\*

