

Seventh Semester B.E. Degree Examination, Dec.2017/Jan.2018 Structural Dynamics

Time: 3 hrs.

Max. Marks:100

10CV767

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Explain critical damping, over damping and under damping pertaining to single degree of freedom system. (05 Marks)
 - b. Differentiate between: (i) Forced vibrations and free vibrations.
 - (ii) Random excitation and harmonic excitation. (05 Marks)
 - c. A machine of 80 kg mass is mounted on a spring whose total stiffness is 50 kN/m and total damping is 10 kN/m. Find the motion U(f) for initial displacement of 20 mm and initial velocity of 100 mm/sec.

 (10 Marks)
- 2 a. Explain the logarithmic damping and derive the expression for the same. (05 Marks)
 - b. A SDOF system consists of mass 20 kg, stiffness of the spring 2200 N/m and a dashpot with a damping coefficient of 60 N-S/m is subjected to a harmonic excitation of F = 200 sin 5t. Write the complete solution of the equation of motion. (15 Marks)
- a. Explain the dependence of transmissibility on frequency ratio and damping ratio with a qualitative graph relating to all the above mentioned three quantities. What is the range of frequency ratio for which isolation is effective? (08 Marks)
 - b. An engine weighing 1000 N including reciprocating parts is mounted on springs. The weights of the reciprocating parts is 22 N and the stroke is 90 mm. The engine speed is 720 rpm. Neglecting damping find the stiffness of the springs, so that the force transmitted to the foundation is 5% of the amplitude force. If under the actual working conditions the damping reduces the amplitude of successive vibration by 25% determine the force transmitted at 720 rpm.

 (12 Marks)
- a. Derive an expression for Duhamul's integral in respect of response of single degree of freedom system to general dynamic leading. (10 Marks)
 - b. State and prove principle of orthogonality of modes.

(10 Marks)

PART - B

Determine the natural frequencies and mode shapes for the structure as shown in Fig. Q5.

Draw the mode shapes.

(20 Marks)

Fig. Q5

6 Compute the response due to harmonic loading for the shear frame shown in Fig. Q6.

(20 Marks)

10CV767

For a three storyed shear building subjected to harmonic loading. Compute the response, given the results of the free vibration analysis. Neglect axial deformation in all structural elements.

Given: Stiffness of floors

$$K_1 = K_2 = 160 \times 10^6 \,\text{N/m}$$

$$K_3 = 240 \times 10^6 \,\text{N/m}$$

$$M_1 = M_2 = M_3 = 20 \times 10^3 \,\mathrm{kg}$$

Natural frequencies are $\omega_1 = 43.87$ rad/s, $\hat{\omega}_2 = 120.15$ rad/s, $\omega_3 = 167$ rad/s.

Mode shapes:

Fig. Q7

[
$$\phi_1$$
] = $\begin{bmatrix} 1.00 \\ 0.76 \\ 0.34 \end{bmatrix}$, $[\phi_2] = \begin{bmatrix} 1.00 \\ -0.80 \\ -1.16 \end{bmatrix}$, $[\phi_3] = \begin{bmatrix} 1.00 \\ -2.43 \\ 2.51 \end{bmatrix}$.

(20 Marks)

- 8 a. Derive the governing differential equation of motion for a free flexural vibration of beam.
 (10 Marks)
 - b. Explain the lumped mass and consistent mass formulation for vibration of beam. (10 Marks)

* * * * *