Seventh Semester B.E. Degree Examination, June/July 2015 Design and Drawing of Bridges

Time: 4 hrs. Max. Marks:100

Note: 1. Answer any TWO full questions from Part-A and ONE from Part-B. 2. Use of IS456-2000, IRC21-1987, steel tables, Pigeard's curves are permitted.

PART - A

- Define the term Bridge. Discuss the classification of bridges.
- (08 Marks)
- b. Explain various methods employed to finding design discharge.
- (08 Marks) (04 Marks)
- c. Explain the terms with equation: i) Linear water; ii) Depth of scour. a. Design a pipe culvert through a road embankment of height 3m. The top width of the road is 2
- 7.5m and formation width is 10m. The slope of the embankment is 1.5:1. The maximum discharge is 1.57 m³/s. The safe velocity is 2.00 m/s. IRC class AA wheeled vehicle of max. load of 62.50kN. Take C_S is 0.032 and unit weight of soil is $20kN/m^3$, 3EBS = 111 kN/m. Use NP₃ 1000/1200 pipes. Longitudinal steel 5.8 kg/m and spiral steel 44kg/m. Unit weight of soil is 20kN/m³. Load due to earth fill is 59.5 kN/m. (15 Marks)
 - b. Draw the longitudinal section of the pipe showing embankment details.
- (05 Marks)
- a. Across a stream a RCC slab culvert of single slab for two lane 6m clear length is proposed to a NH to suit the following details:

Clear span

= 6m, bearing width = 400mm

Stream B.L

= 50.00m

HFL

 $= 53.00 \mathrm{m}$

Hard rock strata

=48.00m Width of footpath - 1m on eitherside and height 1m

W.C. thickness

=80mm

R. formation level

 $= 57.00 \mathrm{m}$

Slop of embankment Loading

= 1.5:1= 1 RC class AA tracked vehicle

I.F.

= 0.213

Constant K

Materials: M₂₀ grade and Fe-415 steel.

Design parameters : m = 13, n = 0.33, j = 0.89, Q = 1.008.

Design deck slab (shear need not be checked).

(15 Marks)

b. Draw the details of the reinforcements in the longitudinal section of the deck slab. (05 Marks)

PART - B

A RCC T-beam slab type bridge is proposed across a stream for a NH to suit the following data:

Clear width of road

= 7.5 m

Eff span

= 16m

Bed level of stream HFL

= 100.00mm = 105.00m

= 106.00m

G.L

R.F.L

= 108.00m

Hard rock strata

= 98.50m

Side slope of embankment

= 1.5:1

Bedwidth of stream

= 16m

Side slopes of stream

 $= 600 \text{mm} \times 300 \text{mm}$ (depth) on either side

Kerbs Thickness P.C.C. wearing coat = 80mm

be treated as malpractice. May revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will cross lines on the remaining assorily draw diagonal Important Note: 1. On completing your answers,

Three longitudinal girders at 2.5 m c/c.

Five cross girders at 4.0 m c/c.

Use M20 grade concrete mix and Fe-415 steel.

Design:

- I. An intermediate panel of deck slab for 1RC class AA tracked vehicles (shear need not be checked), take the following:
 - i) I.F = 25%
 - ii) Moment coefficients for dead load B.M: $m_1 = 0.049$, $m_2 = 0.015$
 - iii) Moment coefficients for LLBM: $m_1 = 0.085$, $m_2 = 0.024$.
- II. An intermediate longitudinal girders using Courbon's method for the same load. Impact factor (I.F) = 10%. (30 Marks)
- b. Draw the following views to a suitable scale
 - i) Half longitudinal section and half longitudinal elevation.

(15 Marks)

ii) Half plan @ top and half plan at foundation level.

(15 Marks) (15 Marks)

5 a. Design a composite bridge deck consisting of RCC slab on steel girders to suit the following details:

Span of the bridge = 15.0 m

Loading = 1RC class AA (tracked vehicles)

Road width = 7.5 m

Kerb = $600 \text{mm} \times 300 \text{mm}$ (depth) either side

No. of steel girders = 4.0 Spacing of girders = 2.5m c/c

Materials: M25 grade and Fe415 steel

Impact factor = 0.25
Bed level R.L. = 250.0m
Bed width = 21m
Stream bund top
Road top level = 255.50m
Hard rock strata = 248.50m
Wind wall = return type

Design:

- i) An intermediate panel deck slab Pigeard's coefficients for dead load $M_1 = 0.045$ and $M_2 = 0.028$ for live load $M_1 = 0.08$ and $M_2 = 0.0425$.
- ii) An intermediate girder with check for shear and deflection.
- iii) Suitable shear connectors. Girder bearing stress 165 kN/mm² and shear stress 94.5 N/mm². (30 Marks)
- b. Draw the following views to a suitable scale:
 - i) Half longitudinal section and elevation.

(15 Marks)

ii) Half plan @ top and half at bottom.

(15 Marks)

* * * *