VISVESVARAYA TECHNOLOGICAL UNIVERSITY BELAGAVI

Scheme of Teaching and Examination and Syllabus B.E. (Common to all Programmes) III SEMESTER (Effective from Academic year 2018-19)

	B. E. Common to all Pro		DE			
Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - III						
TRANSFORM CALCULUS, FOURIER SERIES AND NUMERICAL TECHNIQUES						
Course Code	18MAT31	CIE Marks	40			
Teaching Hours/Week (L: T:P)	(2:2:0)	SEE Marks	60			
Credits	03	Exam Hours	03			
 Course Learning Objectives: To have an insight into Fourie and Z-transforms. To develop the proficiency in applications, using numerical Module-1 	variational calculus and so	-	-			
Laplace Transform: Definition and transforms of Periodic functions (state Inverse Laplace Transform: Definitransforms (without Proof) and problec Module-2 Fourier Series: Periodic functions, D	ment only) and unit-step f ition and problems, Con ms. Solution of linear diff	Tunction – problems. volution theorem to find the the second se	he inverse Laplace lace transforms.			
arbitrary period. Half range Fourier se Module-3 Fourier Transforms: Infinite Four transforms. Problems.		• •	s. Inverse Fourier			
Difference Equations and Z-Trans Standard z-transforms, Damping and problems, Inverse z-transform and app	shifting rules, initial valu	e and final value theorems (
Module-4						
Numerical Solutions of Ordinary Di Numerical solution of ODE's of first Runge -Kutta method of fourth order derivations of formulae)-Problems.	order and first degree- Ta	ylor's series method, Modif				
Module-5	Las ODE! Damas Varia					
Numerical Solution of Second Ord method. (No derivations of formulae). Calculus of Variations: Variation Geodesics, hanging chain, problems.	of function and function	onal, variational problems,				
 Course outcomes: At the end of the c CO1: Use Laplace transform arising in network analysis, co CO2: Demonstrate Fourier set system communications, digit CO3: Make use of Fourier train wave and heat propagation, CO4: Solve first and second using single step and multistep CO5:Determine the externals arising in dynamics of rigid box 	and inverse Laplace tran ontrol systems and other fi- ries to study the behaviou al signal processing and fi- nsform and Z-transform to signals and systems. d order ordinary differen o numerical methods. of functionals using opdies and vibrational anal	sform in solving differentia elds of engineering. r of periodic functions and t eld theory. to illustrate discrete/continue tial equations arising in en- calculus of variations any ysis.	their applications in ous function arising gineering problems			
 The question paper will have ter Each full question will be for 20 There will be two full questions 	marks.	sub- questions) from each n	nodule.			

• Each full question will have sub- question covering all the topics under a module.

• The students will have to answer five full questions, selecting one full question from each module.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textb	oooks			
1	AdvancedEngineeringMathematics	E. Kreyszig	John Wiley & Sons	10 th Edition, 2016
2	Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers	44 th Edition, 2017
3	Engineering Mathematics	Srimanta Pal et al	Oxford University Press	3 rd Edition, 2016
Refer	ence Books			
1	AdvancedEngineeringMathematics	C. Ray Wylie, Louis C. Barrett	McGraw-Hill Book Co	6 th Edition, 1995
2	Introductory Methods of Numerical Analysis	S.S.Sastry	Prentice Hall of India	4 th Edition 2010
3	Higher Engineering Mathematics	B.V. Ramana	McGraw-Hill	11 th Edition,2010
4	A Textbook of Engineering Mathematics	N.P.Bali and Manish Goyal	Laxmi Publications	6 th Edition, 2014
5	AdvancedEngineeringMathematics	Chandrika Prasad and Reena Garg	Khanna Publishing,	2018
Web	links and Video Lectures:	•	•	•
1. htt	p://nptel.ac.in/courses.php?disciplineII	D=111		
2. htt	p://www.class-central.com/subject/ma	th(MOOCs)		
3. htt	p://academicearth.org/			

4. VTU EDUSAT PROGRAMME - 20

	B. E. Common to all Prog					
Outcome Based Educ		Based Credit System (CB	CS)			
SEMESTER - III ADDITIONAL MATHEMATICS – I						
	Learning Course: Commo					
(A Bridge course for Lateral I			ogrammes)			
Course Code	18MATDIP31	CIE Marks	40			
Teaching Hours/Week (L:T:P)	(2:2:0)	SEE Marks	60			
Credits	0	Exam Hours	03			
Course Learning Objectives:						
• To provide basic concepts of a	complex trigonometry, vec	tor algebra, differential and	integral calculus.			
• To provide an insight into vec	tor differentiation and first	t order ODE's.				
Module-1						
Complex Trigonometry: Complex	Numbers: Definitions a	nd properties. Modulus a	nd amplitude of a			
complex number, Argand's diagram, I						
Vector Algebra: Scalar and vectors.	Addition and subtraction	and multiplication of vector	ors- Dot and Cross			
products, problems.						
Module-2	1100	·11 / /· · ·				
Differential Calculus : Review of						
expansions-Illustrative examples. Part only. Total derivatives-differentiation						
only. Total derivatives-differentiation	of composite functions. Ja					
Module-3						
Vector Differentiation: Differentiation						
a space curve. Scalar and vector point	t functions. Gradient, Dive	ergence, Curl-simple proble	ms. Solenoidal and			
irrotational vector fields-Problems.						
Module-4						
Integral Calculus: Review of element	tary integral calculus. Red	uction formulae for sin ⁿ x, co	os ⁿ x (with proof)			
and sin ^m xcos ⁿ x (without proof) and ev	aluation of these with stan	dard limits-Examples. Doub	ole and triple			
integrals-Simple examples.						
Module-5						
Ordinary differential equations (OD						
equations: exact, linear differential equ	uations. Equations reducib	le to exact and Bernoulli's e	equation.			
Course Outcomes: At the end of the o	course the student will be a	able to:				
• CO1: Apply concepts of cor	nplex numbers and vector	or algebra to analyze the p	roblems arising in			
related area.						
• CO2: Use derivatives and par	tial derivatives to calculate	e rate of change of multivar	ate functions.			
• CO3: Analyze position, velo	ocity and acceleration in	two and three dimensions	s of vector valued			
functions.	,					
	gration including the evalu	uation of double and triple i	ntegrals			
-	 CO4: Learn techniques of integration including the evaluation of double and triple integrals. CO5: Identify and solve first order ordinary differential equations. 					
•	Juer orumary unreferitiar	equations.				
Question paper pattern:	full questions comprine as	wal marke				
• The question paper will have ter		juai maiks.				
• Each full question will be for 20						
• There will be two full questions		-	nodule.			
• Each full question will have sub	- question covering all the	topics under a module.				
• The students will have to answe	r five full questions, select	ing one full question from e	ach module.			
	I	1				

Sl		Name of the		
No	Title of the Book	Author/s	Name of the	Edition and Year

			Publisher	
Text	book			
1	Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers	43 rd Edition, 2015
Refe	rence Books			
1	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10 th Edition, 2015
2	Engineering Mathematics	N. P .Bali and	Laxmi Publishers	7th Edition, 2007
		Manish Goyal		
3	Engineering Mathematics Vol. I	Rohit Khurana	Cengage Learning	1 st Edition, 2015

	B. E. Common to all Programme	s				
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)						
SEMESTER - IV COMPLEX ANALYSIS, PROBABILITY AND STATISTICAL METHODS						
Course Code	18MAT41	CIE Marks	40			
Teaching Hours/Week (L:T:P)	(2:2:0)	SEE Marks	60			
Credits	03	Exam Hours	03			
Course Learning Objectives:	1	I				
arising in potential theory, quTo develop probability distribution	plications of complex variables, contantum mechanics, heat conduction ribution of discrete, continuous ratal signal processing, design engine	and field theory. indom variables a	nd joint probability			
Calculus of complex functions:	Review of function of a comp	lay yariahla limi	its continuity and			
differentiability. Analytic function consequences.	s: Cauchy-Riemann equations i	n Cartesian and				
Construction of analytic functions:	Milne-Thomson method-Problems					
Module-2	notion Discussion of transformed	7 ²				
Conformal transformations: Introd		$v = z^{-}, w = e$, w = z +			
$\frac{1}{z}$, $(z \neq 0)$.Bilinear transformations-I						
Complex integration: Line integral of and problems.	of a complex function-Cauchy's the	orem and Cauchy'	s integral formula			
Module-3						
Probability Distributions: Review probability mass/density functions. derivation for mean and standard dev	Binomial, Poisson, exponential an					
Module-4 Statistical Methods: Correlation and -problems. Regression analysis- lines Curve Fitting: Curve fitting by the n $y = ax + b, y = ax^b andy = ax^2 + b$	of regression –problems. nethod of least squares- fitting the c		nd rank correlation			
Module-5						
Joint probability distribution: Join	nt Probability distribution for two	discrete random va	ariables, expectation			
and covariance. Sampling Theory: Introduction to s hypothesis for means, student's t-di						
Course Outcomes: At the end of the						
	ic function and complex potentia	als to solve the p	problems arising in			
electromagnetic field theory.						
• Utilize conformal transformation and complex integral arising in aerofoil theory, fluid flow visualization and image processing.						
engineering field.	The second s					
• Make use of the correlation and regression analysis to fit a suitable mathematical model for the statistical data.						
• •	istributions and demonstrate the val	idity of testing the	hypothesis.			
Question paper pattern:						
	en full questions carrying equal mar	ks.				
• Each full question will be for 2						
There will be two full questions	s (with a maximum of four sub- que	estions) from each	module			

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	bks			
1	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10 th Edition,2016
2	Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers	44 th Edition, 2017
3	Engineering Mathematics	Srimanta Pal et al	Oxford University Press	3 rd Edition,2016
Referen	ce Books			
1	Advanced Engineering Mathematics	C. Ray Wylie, Louis C.Barrett	McGraw-Hill	6 th Edition 1995
2	Introductory Methods of Numerical Analysis	S.S.Sastry	Prentice Hall of India	4 th Edition 2010
3	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill	11 th Edition,2010
4	A Text Book of Engineering Mathematics	N. P. Bali and Manish Goyal	Laxmi Publications	2014
5	Advanced Engineering Mathematics	Chandrika Prasad and Reena Garg	Khanna Publishing,	2018
Web lin	ks and Video Lectures:			
 2. http:// 3. http:// 	/nptel.ac.in/courses.php?disciplineI /www.class-central.com/subject/ma /academicearth.org/			
4. VTU	EDUSAT PROGRAMME - 20			

B. E. Common to all Programmes Outcome Based Education (OBE) and Choice Based Credit System (CBCS) SEMESTER - IV

ADDITIONAL MATHEMATICS – II

(Mandatory Learning Course: Common to All Programmes)

(A Bridge course for Lateral Entry students under Diploma quota to BE/B. Tech. programmes)

Course Code	18MATDIP41	CIE Marks	40
Teaching Hours/Week (L:T:P)	(2:1:0)	SEE Marks	60
Credits	0	Exam Hours	03

Course Learning Objectives:

- To provide essential concepts of linear algebra, second & higher order differential equations along with methods to solve them.
- To provide an insight into elementary probability theory and numerical methods.

Module-1

Linear Algebra: Introduction - rank of matrix by elementary row operations - Echelon form. Consistency of system of linear equations - Gauss elimination method. Eigen values and Eigen vectors of a square matrix. Problems.

Module-2

Numerical Methods: Finite differences. Interpolation/extrapolation using Newton's forward and backward difference formulae (Statements only)-problems. Solution of polynomial and transcendental equations – Newton-Raphson and Regula-Falsi methods (only formulae)- Illustrative examples. Numerical integration: Simpson's one third rule and Weddle's rule (without proof) Problems.

Module-3

Higher order ODE's: Linear differential equations of second and higher order equations with constant coefficients. Homogeneous /non-homogeneous equations. Inverse differential operators.[*Particular Integral restricted to* $R(x) = e^{ax}$, sin ax /cos ax for f(D)y = R(x).]

Module-4

Partial Differential Equations (PDE's):- Formation of PDE's by elimination of arbitrary constants and functions. Solution of non-homogeneous PDE by direct integration. Homogeneous PDEs involving derivative with respect to one independent variable only.

Module-5

Probability: Introduction. Sample space and events. Axioms of probability. Addition & multiplication theorems. Conditional probability, Bayes's theorem, problems.

Course Outcomes: At the end of the course the student will be able to:

CO1: Solve systems of linear equations using matrix algebra.

CO2: Apply the knowledge of numerical methods in modelling and solving engineering problems.

CO3: Make use of analytical methods to solve higher order differential equations.

CO4: Classify partial differential equations and solve them by exact methods.

CO5: Apply elementary probability theory and solve related problems.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Text	book			
1	Higher Engineering Mathematics	B.S. Grewal	Khanna Publishers	43 rd Edition, 2015
Refe	rence Books			
1	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10 th Edition, 2015
2	Engineering Mathematics	N. P. Bali and Manish Goyal	Laxmi Publishers	7th Edition, 2007
3	Engineering Mathematics Vol. I	Rohit Khurana	Cengage Learning	1 st Edition, 2015

OPEN ELECTIVE-A

B.E (OPEN TO ALL PROGRAMMES OF ENGINERRING)

Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VI						
OPEN ELECTIVE-A						
LASER PHYSICS AND NON-LINEAR OPTICS (18PHY651)						
Course Code	18PHY651	CIE Marks	40			
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60			
Credits 03 Exam Hours 03						
Course Learning Obiostines			-			

Course Learning Objectives:

This course will

- Enable the students to understand the mode of working of different types of Laser with relevant theoretical background
- Benefit to identify the applications of laser in various fields
- Support to learn the fundamentals of optical fiber materials and various fabrication methods Assist to recognize the relevance of NLO in Laser technology and learn its fundamentals

Module-1

Theory of Vibrations and Resonance:

Equation for simple harmonic motion, Differential equation for SHM, Free vibrations, natural frequency of vibration, Damped vibration, Analytical treatment of Damped vibration, Cases of Over damping, critical damping & Under damping, Forced Vibrations, Analytical treatment of forced vibrations, condition for resonance, sharpness of resonance, Applications of resonance: Takoma Bridge collapse, Laser cavity resonance. Numerical problems.

Module-2

Laser:

Review of basic principles, Types of Laser: Nd-YAG Laser, Liquid Laser, Dye Laser (Rhodamine 6-G), Chemical Laser (HF Laser), Qualitative discussion of Free electron Laser and X-ray Laser, Laser amplifiers. Numerical problems.

Module-3

Applications of Lasers:

Defence applications: Laser range finder and Laser guided antitank missile,

Industrial applications: Data storage and Laser printing,

Research and development applications: Lithography, Laser cooling, Laser fusion and isotope separation.

Detection of pollutants in the atmosphere using laser (LIDAR)

Biomedical applications: Eye surgery, Endoscopy and Dentistry

Module-4

Optical Fiber Communication:

Review of basic principles of Optical fibers, fiber materials, fiber fabrication, Vapor-deposition methods, Fiber optic cables, optical fiber connections, joints and couplers, attenuation and dispersion in optical fibers, Industrial, medical and technological applications of optical fiber, Fiber optic sensors -Intensity modulated, phase modulated and polarization modulated sensors.

Numerical problems.

Module-5

Nonlinear Optics:

Relevance of Nonlinear optics in Laser technology, descriptions of nonlinear optical processes, formal definition of the nonlinear susceptibility, nonlinear susceptibility of a classical anharmonic oscillator, properties of the nonlinear susceptibility, time-domain description of optical nonlinearities, Mention of Kramers–Kronig relations in linear and nonlinear optics. The wave equation for nonlinear optical media, sum-frequency generation, second-harmonic generation, difference-frequency generation and parametric amplification, optical parametric oscillators.

Numerical problems.

Course outcomes: At the end of the course the student will be able to:

CO 1: Distinguish and analyze different types of vibrations.

- CO 2: Understand fabrication and working of different types of Lasers.
- CO 3: Learn the applications of Lasers in various fields.
- CO 4: Acquire the knowledge of optical fibers and their applications in sensor designing.

CO 5: Apprehend the basics of nonlinear optics phenomena through the fundamentals of quantum mechanics **Question paper pattern:**

The question paper will be set for 100 marks and the marks obtained by the student is reduced to 60

- The question paper will have ten full questions carrying equal marks. •
- Each full question will be for 20 marks. •
- There will be two full questions (with a maximum of four sub- questions) from each module. •
- Each full question will have sub- question covering all the topics under a module. •
- The students will have to answer five full questions, selecting one full question from each module. •

Sl No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Text	books	·		
1	Engineering Physics	R. K. Gaur and S. L. Gupta	Dhanpath Rai and Sons	2006
2	Lasers: Theory and Applications	K. Thyagarajan and A.K. Ghatak	Springer	1981
Refe	rence Books			
3	Laser and Fundamentals	W. T. Silfvast	Cambridge University Press	2004
4	Essentials of Nonlinear optics	Y.G.S. Murthy and C. Vijayan	Wiley Publications	2012
5	Lasers and Nonlinear optics	B. B. Laud	John Wiley & Sons Inc	2014

B.E (OPEN TO ALL PROGRAMMES OF ENGINERRING) Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

SEMESTER - VI OPEN ELECTIVE-A

APPLIED CHEMISTRY FOR ENGINEERS

AFFLIED CHEMISTRI FOR ENGINEERS				
Course Code	18CHE652	CIE Marks	40	
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

• This course will explore applications of chemistry which includes polymers, surfactants, nanomaterials, environmental and green chemistry, biomolecules and analytical techniques.

Module-1

Polymers: Introduction, types of polymerisation. Mechanism of polymerization of ethylene. Molecular weight, numerical problems. Glass transition temperature – Crystallinity, melting point. Viscoelasticity. Elastomers-structure, applications and curing. Conducting polymers and applications. Solubility of polymers. Fabrication and moulding of polymers. Synthesis, properties and uses of PVC, PMMA. Resins: Synthesis, properties and uses of urea - formaldehyde and phenol - formaldehyde. Composites: types and applications. Metallic and nonmetallic fillers.

Module-2

Surfactants and Lubricants: Methods of preparation, cleaning mechanism. Critical micelle concentration and its determination. Hydrophobic and hydrophilic interactions. Micelles and reverse micelles. Detergents. Fricohesity of surfactants. Lubricants-physical and chemical properties, types and mechanism of lubrication. Additives of lubricants and freezing points of lubricants.

Corrosion: Thermodynamic overview of electrochemical processes. Reversible and irreversible cells. Chemical and electrochemical corrosion and mechanism of corrosion. Factors affecting corrosion. Protection of corrosion and practical problems of corrosion.

Module-3

Nanomaterials: Introduction to nanomaterials. Properties and applications of fullerenes, fullerols, carbon nanotubes and nanowires. Synthesis-top down and bottom up approaches. Nanoelectronics. Applications of nanomaterials in catalysis, telecommunication and medicine.

Metals and Alloys: Phase rule and applications of one, two and multi-component systems. Iron-carbon phase diagram. Types of alloys, carbon steel, alloy steel, alloys of Cu, Al, Pb.

Module-4

Environmental and Green Chemistry: Air, water and noise pollution. Optimum levels of pollution. Significance and determination of COD and BOD. Solid waste treatment of collection of NKP. Greenhouse effect/global warming. e-Waste. Radioactive pollution. Applications of green chemistry and green technology. Concept of atomic and molecular economy and its use in green chemistry.

Modern Analytical Techniques: Mass spectrometry. Thermal analysis. Electron microscopy, scanning tunneling microscope and atomic force microscope. Sensors. Lab-on-a-chip.

Module-5

Energy Science: Petroleum refining, liquid fuels, anti-knock agents. Cracking of oils. Limitations of fossil fuels. Alternative and non-conventional sources of energy – solar, wind, geo, hydro-power and biomass. Advantages and disadvantages. Nuclear energy, reactors and nuclear waste disposal. Safety measures for nuclear reactors.

Course Outcomes: At the end of the course, students are able to:

CO1: Apply the principles of Polymer Chemistry in industrial applications.

CO2: Understand the structures of different types of molecules in lubrication and corrosion

CO3: Distinguish between nanomaterials, metals and alloys.

CO4: Use classical methods of gravimetric and volumetric analysis through analytical techniques.

CO5: Apprehend the need of non-conventional energy sources.

Question paper pattern:

Note:- The SEE question paper will be set for 100 marks and the marks scored by the student will be proportionately reduced to 60.

12

- The question paper will have **ten** full questions carrying equal marks.
- Each full question carries **20** marks.
- There will be **two** full questions (with a **maximum** of **three** sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.

The students will have to answer **five** full questions, selecting **one** full question from each module

Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
Textboo	Textbooks						
1	Introduction to Nano Science	S. M. Lindsay	Oxford	2009			
2	A Textbook of Engineering Chemistry	Shashi Chawla	Dhanpat Rai & CO	2013			
Referen	ce Books						
3	Engineering Chemistry	P. C Jain and M. Jai	Dhanpat Rai & CO	2013			
4	Advanced Polymer Chemistry	M. Chanda	New York : Marcel Dekker	2000			
5	A Textbook of Environmental Chemistry	O. D. Tyagi and M. Mehra	Anmol Publications Pvt Ltd	1990			

B.E (OPEN TO ALL PROGRAMMES OF ENGINERRING) Choice Based Credit System (CBCS) and Outcome Based Education (OBE) **SEMESTER - VI OPEN ELECTIVE-A ADVANCED LINEAR ALGEBRA** Course Code 18MAT653 **CIE Marks** 40 Teaching Hours/Week (L:T:P) SEE Marks (3:0:0)60 Credits Exam Hours 03 3 **Course Learning Objectives:** To familiarize the important tools of linear algebra, that are essential in all branches of engineering. To develop the knowledge/skills of linear transformation and decomposition techniques in a comprehensive manner. Module-1 Linear Equations: Consistent and inconsistent systems and its solution sets; LU-decomposition. Vector Spaces: Vector spaces; subspaces; Linearly independent and dependent vectors; Bases and dimension; coordinate vectors; computations concerning subspaces-Illustrative examples. Module-2 **Linear Transformations:** Linear transformations; algebra of transformations; representation of transformations by matrices; linear functional; Non singular Linear transformations; inverse of a linear transformation; Problems on Rank-Nullity theorem. Module-3 Inner Product Spaces: Inner products; inner product spaces; orthogonal sets and orthogonal projections; Gram-Schmidt orthogonalization process; QR- decomposition. Module-4 Introduction to Spectral Theory: Eigen values and eigenvectors; Diagonalization; quadratic Forms, constrained optimization; Singular value decomposition. Module-5 **Engineering Applications:** i) Graphs and Networks (Article No:10.1, P.No:452-461, Text No. 2). ii) Matrices in Engineering (Article No:10.2, P.No:462-473, Text No. 2). iii) Computer Graphics.(Article No:10.9, P.No:596-602, Ref No. 3). **Course outcomes:** At the end of the course the student will be able to: **CO1:** Demonstrate the applications of numerical methods to find the roots of polynomial equations and eigen values of real symmetric matrices. **CO2**: Apply various numerical methods for solving linear partial differential equations arising in engineering field. CO3: Develop expansion of functions of complex variables in terms of Laurent's series, explain ideas related to the calculus of residues and contour integration. **CO4**: Understand the facts related hypothesis testing and analyze the analysis of variancefor larger samples. **CO5:** Apply the knowledge of stochastic process, queuing theory, in solving problems arising in various physical and engineering phenomena. Question paper pattern: The question paper will have ten full questions carrying equal marks. Each full question will be for 20 marks. • There will be two full questions (with a maximum of four sub- questions) from each module. • Each full question will have sub- question covering all the topics under a module. • The students will have to answer five full questions, selecting one full question from each module. • Name of the Name of the Sl **Title of the Book Edition and Year** Author/s Publisher No Textbook/s

1	Linear Algebra and its Applications	David C. Lay	Cambridge	3 rd Edition, 2017.
			University Press	
2	Introduction to Linear Algebra	Gilbert Strang	Wellesley-	5 th Edition, 2016.
			Cambridge Press	
Refe	erence Books			
3	Introductory Linear Algebra with	Bernard Kolman	Pearson Education	7 th Edition, 2003
	Applications	and David R. Hill	(Asia) Pvt. Ltd	
4	Linear Algebra	Kenneth Hoffman	Pearson Education	2 nd Edition, 2004
		andRay Kunze	(Asia) Pte. Ltd,	
			2004.	
5	Elementary Linear Algebra -	Howard Anton	Wiley, 2014	11 th Edition, 2014
	Applications Version	and Chris Rorres		

B.E (OPEN TO ALL PROGRAMMES OF ENGINERRING) Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VII

OPEN ELECTIVE - B					
ADVANCED PHYSICS FOR ENGINEERS (18PHY751)					
Course Code	18PHY751	CIE Marks	40		
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60		
Credits	03	Exam Hours	03		

Course Learning Objectives:

This course will Enable the students to

- Learn Quantum mechanics, Raman spectroscopy and its theoretical background with applications
 - Explore the fundamentals of Quantum computation
 - Recognize Nuclear and environmental hazards with their implications
- Understand Special theory of relativity and its relevance in latest applications

Module-1

Raman Spectroscopy:

Scattering of light, Coherent and incoherent scattering with examples. Raman effect, Stoke's and anti Stoke's lines, Characteristics of Raman spectra, Experimental study of Raman effect, Classical and Quantum theory of Raman effect.

Different energy levels in molecules, Mention of the expression for vibrational energy and rotational energy of a diatomic molecule, Rotational and Vibrational Raman spectra (qualitative)

Applications of Raman spectroscopy (qualitative), Detailed discussion of role of Raman spectroscopy in Forensic science, Environmental studies and Industrial applications, Numerical Problems

Module-2

Quantum Mechanics:

Operator formalism of Schrodinger equation (time dependent Schrodinger equation- Hamiltonian), Expectation values, Applications of Schrodinger's equation: Step potential - Determination of reflection and transmission coefficients when the energy of incident particles is (i) greater than the height of step potential ($E > V_0$) (ii) less than the height of step potential ($E < V_0$). Rectangular potential barrier, Barrier penetration and quantum mechanical tunnelling, Tunnelling probability (T), Applications of tunnelling: Scanning Tunnelling microscope (STM), Alpha decay, Tunnel diode.

quantum structures, comparison with normal structures and quantum structure.

Module-3

Quantum Computing:

Introduction to quantum computation, Classical information and quantum information, Moore's law, Maxwell's demon and Szilard's simplified model, Landauer's principle, Idea of reversibility, Superposition in quantum computation with examples (Qualitative), Concept of Qubit, Properties of Qubit-vector representations in qubit states, Superposed spin states of electron, Quantum amplitudes, rotations, Hadamord transformation, Toffoli gate, Examples of quantum computing through NMR system, Difference between classical and quantum computing.

Module-4

Environmental and Nuclear Hazards:

Environmental Hazards: Regions of atmosphere based on vertical temperature profile, Tropospheric greenhouse gases- O_3 , NO, NO₂, CO, CO₂, CH₄ and non CH₄, atmospheric aerosol particles, role of trace gases and aerosols in atmospheric energy balance. Effect of anthropogenic activities on trace gases and aerosols, surface warming, climate change, stratospheric ozone, effect of CFC's on stratospheric ozone, ozone hole. **Nuclear Hazards:** Radiation: Ionizing radiation and its effects, Mutation: Genetic load, mutation rates,

Nuclear Hazards: Radiation: Ionizing radiation and its effects, Mutation: Genetic load, mutation rates, Background radiation, Units of radiation: Roentgen and rad, Relative biological effectiveness (RBE), Roentgen equivalent man (REM), Man-made radiation: X-Rays, Nuclear radiation, Radiation sickness, Absorption of radiation by biological beings. Numerical Problems.

Module-5

Special Theory of Relativity:

Frames of reference, Galilean transformations, Michelson and Morley experiment-significance of negative result of the experiment, Postulates of Einstein's theory of relativity, Lorentz transformation equation -space and time, Length contraction and time dilation, Velocity addition theorem. Relativistic expression for variation of mass with velocity, mass with energy of a particle in terms of momentum. Equivalence of mass and energy, Relevance of special theory of relativity in GPS. Numerical Problems.

Course Outcomes: At the end of the course the student will be able to:

- CO 1. Apply the concept of Raman spectroscopy to various fields including medicine.
- CO 2: Utilize the principles of quantum mechanics in tunnelling problems.
- CO 3: Understand the developments in modern computing.
- CO 4: Identify the basic environmental and nuclear hazards.
- CO 5: Distinguish between relativistic and non-relativistic motion and its relevance to terrestrial communication

Question paper pattern:

The question paper will be set for 100 marks and the marks obtained by the student is reduced to 60

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

<i>a</i> .							
SI	Title of the Book	Name of the	Name of the Publisher	Edition and Year			
No		Author/s					
Text	Textbooks						
1	Concepts of Modern physics	Arthur Beiser	McGraw-Hill Publishing	2006			
2	Fundamentals of Molecular Spectroscopy	Colin N. Banwell and Elaine M.	McGraw-Hill Publishing	2006			
Refe	Reference Books						
3	Spectroscopy	H. Kaur	Pragati Prakashan, Meerut.	2011			
4	Quantum computation and quantum information	M.A. Nielsen and I.L. Chuang	Cambridge University Press	2012			
5	Chemistry and Physics of Air pollution and climate change	John. H. Seinfield	Wiley	2011			

		ES OF ENGINERRING)				
Choice Based Credit		tcome Based Education (OBE)			
	SEMESTER - Y					
OPEN ELECTIVE-B						
ADVANCED POLYMER CHEMISTRY FOR ENGINEERS						
Course Code	18CHE752	CIE Marks	40			
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60			
Credits	03	Exam Hours	03			
 Course Learning Objectives: This concerns a function of polymers. Explore the conformations and functions are supported by the functions and functions are supported by the functions are supported by the	mer science to investig		-			
Module-1 Introduction to polymers: Definit						
Determination of molecular weight average MW; gel permeation chroma and molecular microstructure. Collig viscosity, small angle X-ray scattering Module-2	tography; spectroscopic gative properties, osmo	techniques to determine cl	hemical composition			
Mechanism and kinetics of polymer kinetics; molecular weight in open an gel point; process condition. Free rad step polymerization; radical and ion inhibition, retardation, auto-acceleration solution, emulsion and suspension poly	d closed system cyclisa ical Polymerization: Na ic polymerizations; ki on; energetic characteris	tion vs. linear polymerization ture of chain polymerization netics of chain polymerization	on, cross-linking and n and comparison of tion; chain transfer,			
Ionic Polymerization and Biopolyme ring opening polymerization, active compositions, reactivity ratio; radical examples. Chemistry and synthesis of examples.	polycarbanions. Copo and ionic co-polymer	lymerization: types of cop zations; Block and Graft of	olymers, copolymer copolymer synthesis			
Module-4						
Thermodynamics of polymer solut fractionation of macromolecules, osm polymers, biodegradability, biosynthes Module-5	notic pressure, lower ch	itical solution temperature.	•			
Polymers for Electronics: Polymer re Electron beam, X-ray and ion sensi electroluminescence, molecular basis optical information storage. Fibres: P crystallinity, stress strain curves; Carb types and applications; Polymer films	tive resists, Conducting of electrical conductive olyesters, mechanical r on fibres and nanotubes in sensor applications.	g polymers, types, properti ty, Photonic applications an equirements for fibers, draw Polymer blends and compo	es and applications nd non-linear optics ving, orientation and			
Course Outcomes: After studying this						
CO1: Relate polymer properties to their structure and conformation.						
CO2: Analyze the mechanism of polyr	-					
CO3: Distinguish between enthalpic and entropic contributions to polymerization.						
CO4: Understand the thermodynamics						
CO5: Apply the knowledge of polyme	rs for engineering applie	cations.				
Question paper pattern: Note:- The SEE question paper will will be proportionately reduc		nd the marks scored by the	estudent			

- The question paper will have ten full questions carrying equal marks.
- Each full question carries 20 marks.
- There will be two full questions (with a maximum of three sub questions) from each module.
- Each full question will have sub question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textb	ooks			
1	Introduction to Physical Polymer Science	L. H. Sperling	Wiley	2005
2	Introduction to Soft matter	I. W. Hamley	John Wiley and Sons	2007
3	Principles of Polymer Chemistry	P. J. Flory	Cornell University Press	1953
Refer	ence Books	•		
4	Polymer chemistry and Physics of Modern Materials,	J. M. G. Cowie	Stanley Thornes, UK	1998
5	Contemporary Polymer Chemistry	H. R. Allcock, F. W. Lampe and J. E. Mark	Pearson	2004
6	Polymers: Chemistry and Physics of Modern Materials	M.G. Cowie	CRC Press	2007

Choice Based Cre	N TO ALL PROGRAMME dit System (CBCS) and Ou	S OF ENGINERRING)	OBE)			
	SEMESTER - V					
OPEN ELECTIVE-B						
ADVANCED MATHEMATICAL METHODS						
Course Code	18MAT753	CIE Marks	40			
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE Marks	60			
Credits	3	Exam Hours	03			
analyze the engineering pr	f statistical techniques, stoch					
Module-1						
Numerical Methods-1:-						
Eigen values of real symmetric r	natrices- Givens method an	d Householder's method.	Roots of polynomial			
equations-Birge-Vieta method and	Bairstow's methods.					
Module-2						
Numerical solution for PDE's:-Nu equations . Numerical solution of I Numerical solution of wave equati Module-3	neat equation by Smith and Cons explicit method.	Crank-Nicolson method.				
Complex Analysis:-Taylor's and	Laurent series expansion of	of analytic functions-proble	ems. The calculus of			
residues-Singularities based on I integration-evaluation of real defin	Laurent's series expansion,	Cauchy's residue theorem	n-problems. Contour			
residues-Singularities based on I integration-evaluation of real defin Module-4	Laurent's series expansion, hite integrals.	Cauchy's residue theorem	n-problems. Contour			
residues-Singularities based on I integration-evaluation of real defin Module-4 Descriptive Statistics- Sampling intervals. Estimation theory. Anal	Laurent's series expansion, hite integrals. and testing the statistical h ysis of variance. F-distribut	Cauchy's residue theorem	n-problems. Contour			
residues-Singularities based on I integration-evaluation of real defin Module-4 Descriptive Statistics- Sampling intervals. Estimation theory. Anal with/without interactions, problem	Laurent's series expansion, hite integrals. and testing the statistical h ysis of variance. F-distribut	Cauchy's residue theorem	n-problems. Contour			
residues-Singularities based on I integration-evaluation of real defin Module-4 Descriptive Statistics- Sampling intervals. Estimation theory. Anal	Laurent's series expansion, hite integrals. and testing the statistical h ysis of variance. F-distribut s related to ANOVA-I. n of stochastic process with e	Cauchy's residue theorem ypothesis. Test of signific ion and F-test related to on examples. Markov chain and	ance and confidence ne way classification d related problems.			
residues-Singularities based on I integration-evaluation of real defin Module-4 Descriptive Statistics- Sampling intervals. Estimation theory. Anal with/without interactions, problem Module-5 Stochastic Process: Classification	Laurent's series expansion, nite integrals. and testing the statistical h ysis of variance. F-distribut is related to ANOVA-I. n of stochastic process with of system, Little law. Discussi the course the student will be is consistent or inconsistent, quired in network analysis.	Cauchy's residue theorem ypothesis. Test of signific ion and F-test related to on examples. Markov chain and on of M/M/1 and M/M/s qu able to: its solution is unique or in	ance and confidence ne way classification d related problems. euing models.			
residues-Singularities based on I integration-evaluation of real defin Module-4 Descriptive Statistics- Sampling intervals. Estimation theory. Anal with/without interactions, problem Module-5 Stochastic Process: Classification Queuing theory- Poisson queuing Course outcomes: At the end of th CO1: Analyze whether a system is and dimension of vector spaces rec CO2: Linearly transform the syste processing problems. CO3: Compute orthogonal and oproblems.	Laurent's series expansion, nite integrals. and testing the statistical h ysis of variance. F-distribut s related to ANOVA-I. n of stochastic process with of system, Little law. Discussi the course the student will be is consistent or inconsistent, quired in network analysis. em from one dimension to ar	Cauchy's residue theorem sypothesis. Test of signific ion and F-test related to on examples. Markov chain and on of M/M/1 and M/M/s qu able to: its solution is unique or in nother in matrix form ,requi	ance and confidence ne way classification d related problems. euing models. afinite and find bases red to analyze image nd signal processing			
residues-Singularities based on I integration-evaluation of real defin Module-4 Descriptive Statistics- Sampling intervals. Estimation theory. Anal with/without interactions, problem Module-5 Stochastic Process: Classification Queuing theory- Poisson queuing Course outcomes: At the end of th CO1: Analyze whether a system is and dimension of vector spaces rec CO2: Linearly transform the syste processing problems. CO3: Compute orthogonal and of problems. CO4: Apply techniques of constra control system analysis, signals ar	Laurent's series expansion, nite integrals. and testing the statistical hysis of variance. F-distribut s related to ANOVA-I. n of stochastic process with e system, Little law. Discussi he course the student will be is consistent or inconsistent, quired in network analysis. em from one dimension to ar orthonormal basis vectors re- nined optimization and singund systems.	Cauchy's residue theorem ypothesis. Test of signific ion and F-test related to on examples. Markov chain and on of M/M/1 and M/M/s qu able to: its solution is unique or in nother in matrix form ,requi equired to analyze image a lar value decomposition for	ance and confidence ance and confidence ne way classification d related problems. euing models. afinite and find bases red to analyze image nd signal processing problems arising in			
residues-Singularities based on I integration-evaluation of real defin Module-4 Descriptive Statistics- Sampling intervals. Estimation theory. Anal with/without interactions, problem Module-5 Stochastic Process: Classification Queuing theory- Poisson queuing Course outcomes: At the end of th CO1: Analyze whether a system is and dimension of vector spaces rec CO2: Linearly transform the syste processing problems. CO3: Compute orthogonal and of problems. CO4: Apply techniques of constrat control system analysis, signals ar CO5: Apply linear algebraic tools	Laurent's series expansion, nite integrals. and testing the statistical hysis of variance. F-distribut s related to ANOVA-I. n of stochastic process with e system, Little law. Discussi he course the student will be is consistent or inconsistent, quired in network analysis. em from one dimension to ar orthonormal basis vectors re- nined optimization and singund systems.	Cauchy's residue theorem ypothesis. Test of signific ion and F-test related to on examples. Markov chain and on of M/M/1 and M/M/s qu able to: its solution is unique or in nother in matrix form ,requi equired to analyze image a lar value decomposition for	ance and confidence ance and confidence ne way classification d related problems. euing models. afinite and find bases red to analyze image nd signal processing problems arising in			
residues-Singularities based on I integration-evaluation of real defin Module-4 Descriptive Statistics- Sampling intervals. Estimation theory. Anal with/without interactions, problem Module-5 Stochastic Process: Classification Queuing theory- Poisson queuing Course outcomes: At the end of th CO1: Analyze whether a system is and dimension of vector spaces rec CO2: Linearly transform the syste processing problems. CO3: Compute orthogonal and of problems. CO4: Apply techniques of constra control system analysis, signals ar CO5: Apply linear algebraic tools Question paper pattern: • The question paper will have	Laurent's series expansion, nite integrals. and testing the statistical h ysis of variance. F-distribut s related to ANOVA-I. n of stochastic process with e system, Little law. Discussi he course the student will be is consistent or inconsistent, quired in network analysis. or from one dimension to ar orthonormal basis vectors re- nined optimization and singu- d systems. to analyze problems in graptice e ten full questions carrying of	Cauchy's residue theorem sypothesis. Test of signific ion and F-test related to on examples. Markov chain and on of M/M/1 and M/M/s qu able to: its solution is unique or ir nother in matrix form ,requi equired to analyze image a lar value decomposition for hs and networks problems, of	ance and confidence ance and confidence ne way classification d related problems. euing models. afinite and find bases red to analyze image nd signal processing problems arising in			
residues-Singularities based on I integration-evaluation of real defin Module-4 Descriptive Statistics- Sampling intervals. Estimation theory. Anal with/without interactions, problem Module-5 Stochastic Process: Classification Queuing theory- Poisson queuing Course outcomes: At the end of th CO1: Analyze whether a system is and dimension of vector spaces rea CO2: Linearly transform the syste processing problems. CO3: Compute orthogonal and of problems. CO4: Apply techniques of constra control system analysis, signals ar CO5: Apply linear algebraic tools Question paper pattern: • The question paper will have • Each full question will be for	Laurent's series expansion, nite integrals. and testing the statistical hysis of variance. F-distribut is related to ANOVA-I. n of stochastic process with e system, Little law. Discussi the course the student will be is consistent or inconsistent, quired in network analysis. em from one dimension to ar orthonormal basis vectors re- nined optimization and singund systems. to analyze problems in graph e ten full questions carrying of r 20 marks.	Cauchy's residue theorem ypothesis. Test of signific ion and F-test related to on examples. Markov chain and on of M/M/1 and M/M/s qu able to: its solution is unique or in nother in matrix form ,requi equired to analyze image a lar value decomposition for hs and networks problems, of equal marks.	ance and confidence ance and confidence ne way classification d related problems. euing models. afinite and find bases red to analyze image nd signal processing problems arising in computer graphics.			
residues-Singularities based on I integration-evaluation of real defin Module-4 Descriptive Statistics- Sampling intervals. Estimation theory. Anal with/without interactions, problem Module-5 Stochastic Process: Classification Queuing theory- Poisson queuing Course outcomes: At the end of th CO1: Analyze whether a system is and dimension of vector spaces rec CO2: Linearly transform the syste processing problems. CO3: Compute orthogonal and of problems. CO4: Apply techniques of constra control system analysis, signals ar CO5: Apply linear algebraic tools Question paper pattern: The question paper will have Each full question will be fo There will be two full questi	Laurent's series expansion, nite integrals. and testing the statistical hysis of variance. F-distribut s related to ANOVA-I. n of stochastic process with e system, Little law. Discussi he course the student will be is consistent or inconsistent, quired in network analysis. em from one dimension to ar orthonormal basis vectors re- nined optimization and singund systems. to analyze problems in grapher e ten full questions carrying or r 20 marks. ons (with a maximum of four	Cauchy's residue theorem ypothesis. Test of signific ion and F-test related to on examples. Markov chain and on of M/M/1 and M/M/s que able to: its solution is unique or in nother in matrix form ,requi equired to analyze image a lar value decomposition for hs and networks problems, of equal marks. r sub- questions) from each	ance and confidence ance and confidence ne way classification d related problems. euing models. afinite and find bases red to analyze image nd signal processing problems arising in computer graphics.			
residues-Singularities based on I integration-evaluation of real defin Module-4 Descriptive Statistics- Sampling intervals. Estimation theory. Anal with/without interactions, problem Module-5 Stochastic Process: Classification Queuing theory- Poisson queuing Course outcomes: At the end of th CO1: Analyze whether a system is and dimension of vector spaces rec CO2: Linearly transform the syste processing problems. CO3: Compute orthogonal and of problems. CO4: Apply techniques of constra control system analysis, signals an CO5: Apply linear algebraic tools Question paper pattern: • The question paper will have • Each full question will be fo	Laurent's series expansion, nite integrals. and testing the statistical hysis of variance. F-distribut is related to ANOVA-I. n of stochastic process with e system, Little law. Discussi he course the student will be is consistent or inconsistent, quired in network analysis. or from one dimension to an orthonormal basis vectors re- nined optimization and singund systems. to analyze problems in graph e ten full questions carrying of r 20 marks. ons (with a maximum of fou sub- question covering all the	Cauchy's residue theorem ypothesis. Test of signific ion and F-test related to on examples. Markov chain and on of M/M/1 and M/M/s qu able to: its solution is unique or in nother in matrix form ,requi equired to analyze image a lar value decomposition for hs and networks problems, of equal marks. r sub- questions) from each the topics under a module.	ance and confidence ance and confidence ne way classification d related problems. euing models. afinite and find bases red to analyze image nd signal processing problems arising in computer graphics.			

No.		Author/s	Publisher	
Textb	ook/s		·	
1	Mathematical Methods for Physics and Engineering	K.F. Riley, M.P.Hobson and S.J.Bence	Cambridge University Press	3 rd Edition, 2017.
2	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10 th Ed.,(Reprint), 2017.
3	Probability, Statistics and Random Process	T.Veerarajan	Tata Mc-Graw Hill Co.	3 rd Edition, 2016
Refer	ence Books		·	
1	Probability, Queuing Theory and Reliability Engineering	G.Haribasharan	Laxmi Publications, New Delhi	2 nd Edition, 2006
2	Higher Engineering Mathematics	B.S. Grewal	Khanna Publishers.	44 th Edition, 2017
3	Introductory Methods of Numerical Analysis	S.S.Sastry	Prentice Hall of India	4 th Edition, 2011
4	Numerical Methods for Scientific and EngineeringComputation	M.K.Jain, S.R.K.Iyengar and R.K.Jain	New Age Int.Publishers	6 th Edition, 2014
5	Probability and Random Processes	G.R.Grimmet and D.R.Stirzaker	Oxford University Press	3 rd Edition, 2001