ENGINEE	RING MATHE	MATICS-II	
(Effective from	•	em (CBCS) scheme] ear 2017 -2018) II	
Subject Code	17MAT21	IA Marks	40
Number of Lecture Hours/Week	04	Exam Marks	60
Total Number of Lecture Hours	50	Exam Hours	03
	CREDITS - 04		
Course objectives:			
To enable students to apply the l	nowledge of M	athematics in various e	ngineering
fields by making them to learn th	-		0 0
Ordinary differential equati	ons		
Partial differential equation	S		
• Double and triple integration	n		
• Laplace transform			
Module – I			Teaching Hours
Linear differential equations w	vith constant	coefficients: Solutions	10 Hours
of second and higher order differential equations - inverse differential			
operator method, method of undetermined coefficients and method of			
variation of parameters.			
Module -2			
Differential equations-2:			10 Hours
Linear differential equations w	ith variable co	oefficients: Solution of	
Cauchy's and Legendre's linear	differential equ	ations.	
Nonlinear differential equat	i ons - Equat	ions solvable for p,	
equations solvable for y, equation	ns solvable for :	x, general and singular	
solutions, Clairauit's equations a	and equations	reducible to Clairauit's	
· 1			

Module – 3

Partial Differential equations:	
Formulation of Partial differential equations by elimination of	
arbitrary constants/functions, solution of non-homogeneous Partial	
differential equations by direct integration, solution of homogeneous	
Partial differential equations involving derivative with respect to one	
independent variable only.	
Derivation of one dimensional heat and wave equations and their	
solutions by variable separable method.	
Module-4	
Integral Calculus:	
Double and triple integrals: Evaluation of double and triple	
integrals. Evaluation of double integrals by changing the order of	
integration and by changing into polar co-ordinates. Application of	
double and triple integrals to find area and volume Beta and	
Gamma functions: definitions, Relation between beta and gamma	
functions and simple problems.	
Module-5	
Laplace Transform	10 Hours
Definition and Laplace transforms of elementary functions.	
Laplace transforms of $e^{at}f(t)$, $t^nf(t)$ and $\frac{f(t)}{t}$ (without proof),	
periodic functions and unit-step function- problems	
Inverse Laplace Transform	
Inverse Laplace Transform - problems, Convolution theorem to	
find the inverse Laplace transforms(without proof) and problems,	

Course outcomes:

On completion of this course, students are able to,

- solve differential equations of electrical circuits, forced oscillation of mass spring and elementary heat transfer.
- solve partial differential equations fluid mechanics, electromagnetic theory and heat transfer.
- Evaluate double and triple integrals to find area, volume, mass and moment of inertia of plane and solid region.
- Use curl and divergence of a vector valued functions in various applications of electricity, magnetism and fluid flows.
- Use Laplace transforms to determine general or complete solutions to linear ODE

Question paper pattern:

- The question paper will have ten questions.
- Each full Question consisting of 20 marks
- There will be **2** full questions(with a **maximum** of **four** sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer **5** full questions, selecting one full question from each module.

Text Books:

- B. S. Grewal," Higher Engineering Mathematics", Khanna publishers, 42nd edition, 2013.
- Kreyszig, "Advanced Engineering Mathematics " Wiley, 2013

Reference Books:

- B.V.Ramana "Higher Engineering M athematics" Tata Mc Graw-Hill, 2006
- N P Bali and Manish Goyal, "A text book of Engineering mathematics", Laxmi publications, latest edition.

H. K Dass and Er. Rajnish Verma ,"Higher Engineerig Mathematics",S. Chand publishing, 1st edition, 2011.