_	BASIC ELECTRONICS		
• •	e Based Credit System (CH	, ,	
(Effective fi	rom the academic year 20	17 -2018)	
Subject Code	SEMESTER - I/II 17ELN15 / 17ELN25	IA Marks	40
Number of Lecture	04		-
Hours/Week		Exam Marks	60
Total Number of Lecture	50	Exam Hours	03
Hours		Linam Hours	00
Course objectives:	CREDITS - 04		
The course objective is to	make students of all the	branches of Eng	ineerin
to understand the efficac	y of Electronic principles	which are perv	asive i
engineering applications			
Module -1			Teacl
			ing
<u> </u>		• • •	Hour
Semiconductor Diodes	and Applications (Text	l): p-n junction	06 Hour
diode, Characteristics and	d Parameters, Diode appr	roximations, DC	nour
load line analysis, Half-wa	ave rectifier, Two-diode Fu	ll-wave rectifier,	
Bridge rectifier, Capacitor	r filter circuit (only quali	tative approch),	
Zener diode voltage regu	lators: Regulator circuit	with no load,	
Loaded Regulator. Numeri	cal examples as applicabl	е.	
Bipolar Junction Transi	stors: BJT operation, B.	IT Voltages and	
Currents, BJT amplification	on, Common Base, Comn	on Emitter and	04
Common Collector Characteristics, Numerical examples as			
applicable.		enan-proo ao	Hour
Module -2			
BJT Biasing (Text-1): DO	C Load line and Bias Po	oint, Base Bias,	04
Voltage divider Bias, Num	erical examples as applica	ble.	Hour
Introduction to Operati	onal Amplifiers (Text-2)	: Ideal OPAMP,	
Inverting and Non Inverti	ng OPAMP circuits, OPAM	MP applications:	
0			06
voltage follower. addition	subtraction. integration	differentiation:	06
oltage follower, addition, fumerical examples as ap	, subtraction, integration	, differentiation;	Hour

Module – 3		
Digital Electronics (Text-2): Introduction, Switching and Logic	10	
Levels, Digital Waveform (Sections 9.1to 9.3). Number Systems:	Hours	
Decimal Number System, Binary Number System, Converting		
Decimal to Binary, Hexadecimal Number System: Converting		
Binary to Hexadecimal, Hexadecimal to Binary, Converting		
Hexadecimal to Decimal, Converting Decimal to Hexadecimal, Octal		
Numbers: Binary to Octal Conversion. Complement of Binary		
Numbers. Boolean Algebra Theorems, De Morgan's theorem. Digital		
Circuits: Logic gates, NOT Gate, AND Gate, OR Gate, XOR Gate,		
NAND Gate, NOR Gate, X-NOR Gate. Algebraic Simplification,		
NAND and NOR Implementation (Sections 11.7 and 11.8): NAND		
Implementation, NOR Implementation. Half adder, Full adder.		
Module-4		
Flip-Flops (Text-2): Introduction to Flip-Flops (Section 12.1), NAND		
Gate Latch/ NOR Gate Latch, RS Flip-Flop, Gated Flip-Flops:	Hours	
Clocked RS Flip-Flop (Sections 12.3 to 12.5).		
Microcontrollers (Ref.1): Introduction to Microcontrollers, 8051	05	
Microcontroller Architecture and an example of Microcontroller	Hours	
based stepper motor control system (only Block Diagram approach).		
Module-5		
Communication Systems (Text-2): Introduction, Elements of	06	
Communication Systems, Modulation: Amplitude Modulation,	Hours	
Spectrum Power, AM Detection (Demodulation), Frequency and		
Phase Modulation. Amplitude and Frequency Modulation: A		
comparison.		
Transducers (Text-2): Introduction, Passive Electrical Transducers,		
Resistive Transducers, Resistance Thermometers, Thermistor.	04	
Linear Variable Differential Transformer (LVDT). Active Electrical	Hours	
Transducers, Piezoelectric Transducer, Photoelectric Transducer.		

Course outcomes:

After studying this course, students will be able to:

- Appreciate the significance of electronics in different applications,
- Understand the applications of diode in rectifiers, filter circuits and wave shaping,
- Apply the concept of diode in rectifiers, filters circuits
- Design simple circuits like amplifiers (inverting and non inverting), comparators, adders, integrator and differentiator using OPAMPS,
- Compile the different building blocks in digital electronics using logic gates and implement simple logic function using basic universal gates, and
- Understand the functioning of a communication system, and different modulation technologies, and
- Understand the basic principles of different types of Transuducers.

Question paper pattern:

- The question paper will have ten questions.
- Each full Question consisting of 20 marks
- There will be **2** full questions(with a **maximum** of **four** sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer **5** full questions, selecting one full question from each module.

Text Books:

- David A. Bell, "Electronic Devices and Circuits", Oxford University Press, 5th Edition, 2008.
- D.P. Kothari, I. J. Nagrath, "Basic Electronics", McGraw Hill Education (India) Private Limited, 2014.

Reference Books: MuhammadAli Mazidi, "The 8051 Microcontroller and Embedded. Systems. Using Assembly and C." Second Edition, 2011, Pearson India.