CBCS SCHEME

USN

18MATDIP31

Third Semester B.E. Degree Examination, Jan./Feb. 2021 Additional Mathematics - I

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Prove that
$$(1 + \cos \theta + i \sin \theta)^n + (1 + \cos \theta - i \sin \theta)^n = 2^{n+1} \cos^n \left(\frac{\theta}{2}\right) \cos\left(\frac{n\theta}{2}\right)$$
. (08 Marks)

b. Express $1-i\sqrt{3}$ in the polar form and hence find its modulus and amplitude. (06 Marks)

c. Find the argument of $\frac{1+\sqrt{3}i}{1-\sqrt{3}i}$ (06 Marks)

- a. If $\vec{A} = 4\hat{i} + 3\hat{j} + \hat{k}$ and $\vec{B} = 2\hat{i} \hat{j} + 2\hat{k}$ find a unit vector \hat{N} perpendicular to both \vec{A} and \vec{B} such that \overrightarrow{A} , \overrightarrow{B} and N from a right handed system. (08 Marks)
 - b. If $\vec{a} = \hat{i} + 2\hat{j} 3\hat{k}$ and $\vec{b} = 3\hat{i} \hat{j} + 2\hat{k}$ then show that $(\vec{a} + \vec{b})$ and $(\vec{a} \vec{b})$ are orthogonal. (06 Marks)
 - c. Show that the position vectors of the vertices of a triangle $\vec{A} = 3(\sqrt{3} \ \hat{i} \hat{j})$, $\vec{B} = 6\hat{i}$ and $C = 3(\sqrt{3}\hat{i} + j)$ form an isosceles triangle. (06 Marks)

- Obtain the Maclaurin series expansion of log secx upto to the terms containing x⁶. (08 Marks)
 - b. If $u = \tan^{-1} \left(\frac{x^3 + y^3}{x y} \right)$, prove that $xu_x + yu_y = \sin 2u$. (06 Marks)
 - c. If u = f(x y, y z, z x), show that $u_x + u_y + u_z = 0$. (06 Marks)

- a. Prove that $\log(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4}$... by using Maclaurin's series notation. (08 Marks)
 - b. Using Euler's theorem, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3u \log u$. If $u = e^{\frac{x}{x+y}}$. (06 Marks)
 - c. If u = x + y, v = y + z, w = z + x, find $J\left(\frac{u, v, w}{x + v + z}\right)$. (06 Marks)

- a. A particle moves along the curve $\vec{r} = \cos 2t \hat{i} + \sin 2t \hat{j} + t \hat{k}$, find the velocity and acceleration at $t = \frac{\pi}{\varrho}$ along $\sqrt{2} \hat{i} + \sqrt{2} \hat{j} + \hat{k}$. (08 Marks)
 - b. Find the unit normal to the surface, xy + x + zx = 3 at (1, 1, 1). (06 Marks)
 - Find the constant 'a' such that the vector field $\vec{F} = 2xy^2z^2\hat{i} + 2x^2yz^2\hat{j} + ax^2y^2z\hat{k}$ is irrotational. (06 Marks)

18MATDIP31

OR

6 a. If
$$\vec{F} = (x + y + 1)\hat{i} + \hat{j} - (x + y)\hat{k}$$
 show that \vec{F} .curl $\vec{F} = 0$. (08 Marks)
b. If $\phi(x, y, z) = xy^2 + yz^3$, find $\nabla \phi \& |\nabla \phi|$ at $(1, -2, -1)$ (06 Marks)

b. If
$$\phi(x, y, z) = xy^2 + yz^3$$
, find $\nabla \phi \& |\nabla \phi|$ at $(1, -2, -1)$ (06 Marks)

c. Show that vector field
$$\vec{F} = \left[\frac{xi + y\hat{j}}{x^2 + y^2} \right]$$
 is solenoidal. (06 Marks)

7 a. Obtain a reduction for
$$\int_{0}^{\frac{\pi}{2}} \sin^{n} x dx$$
 (n > 0). (08 Marks)

b. Evaluate
$$\int_{0}^{1} \frac{x^9}{\sqrt{1-x^2}} dx$$
. (06 Marks)

c. Evaluate
$$\iint_R xy dx dy$$
 where R is the first quadrant of the circle $x^2 + y^2 = a^2$, $x \ge 0$, $y \ge 0$.

(06 Marks)

8 a. Obtain a reduction formula for
$$\int_{0}^{\frac{\pi}{2}} \cos^{n} x dx$$
, $(n > 0)$. (08 Marks)

b. Evaluate
$$\int_{0}^{2a} x^2 \sqrt{2ax - x^2} dx$$
 (06 Marks)

c. Evaluate
$$\iint_{-1}^{0} \int_{x-2}^{1} \int_{x-2}^{z} (x+y+z) dy dx dz$$
 (06 Marks)

9 a. Solve
$$\frac{dy}{dx} + y \cot x = \sin x$$
. (08 Marks)

b. Solve
$$\cos x \sin y dx + \cos y \sin x dy = 0$$
. (06 Marks)

c. Solve
$$\frac{dy}{dx} + \frac{y}{x} = y^2 x$$
. (06 Marks)

10 a. Solve:
$$\frac{dy}{dx} + \frac{y \cos x + \sin y + y}{\sin x + x \cos y + x} = 0.$$
 (08 Marks)

b. Solve:
$$\frac{dy}{dx} + \frac{y}{x} = y^2 x$$
. (06 Marks)
c. Solve: $\sqrt{1 - y^2} dx = (\sin^{-1} y - x) dy$ (06 Marks)

c. Solve:
$$\sqrt{1 - y^2} dx = (\sin^{-1} y - x) dy$$
 (06 Marks)