USN

17MAT31

Third Semester B.E. Degree Examination, Dec.2018/Jan.2019 **Engineering Mathematics – III**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Find the Fourier series expansion for the periodic function f(x), if in one second

Find the Fourier series expansion f

$$f(x) = \begin{cases} 0; & -\pi < x < 0 \\ x; & 0 < x < \pi \end{cases}$$
Expand the function $f(x) = x(x, y)$

(08 Marks)

Expand the function $f(x) = x(\pi - x)$ over the interval $(0, \pi)$ in half range Fourier cosine series.

The following value of function y gives the displacement in inches of a certain machine part for rotations x of a flywheel. Expand y-in terms of Fourier series upto the second harmonic.

Rotations	X	0	$\pi/6$	$2\pi/6$	$3\pi/6$	$4\pi/6$	$5\pi/6$	π
Displacement	У	0	9.2	14.4	17.8	17.3	11.7	0

(06 Marks)

Find the Fourier series expansion for the function

find the Fourier series expansion
$$f(x) = \begin{cases} \pi x; & 0 \le x \le 1 \\ \pi(2-x); & 1 \le x \le 2 \end{cases}$$
 and deduce
$$\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}.$$

and deduce
$$\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$$
.

(08 Marks)

b. Expand in Fourier series $f(x) = (\pi - x)^2$ over the interval $0 \le x \le 2\pi$.

(06 Marks)

The following table gives the variations of periodic current over a period T.

t	(secs)	0	T/6	T/3 T/2	2T/3	5T/6	T
A	(Amps)	1.98	1.30	1.05 1.30	-0.88	-0.25	1.98

Expand the function (periodic current) by Fourier series and show that there is a direct current part of 0.75 amp and also obtain amplitude of first harmonic. (06 Marks)

a. Find Fourier transform of $f(x) = \begin{cases} 1-x^2; & |x| < 1 \\ 0; & |x| > 1 \end{cases}$

and hence evaluate
$$\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^{3}} dx$$
.

(08 Marks)

b. Find Fourier Cosine transform of the function:

$$f(x) = \begin{cases} 4x ; & 0 < x < 1 \\ 4 - x ; & 1 < x < 4 \\ 0 ; & x > 4 \end{cases}$$

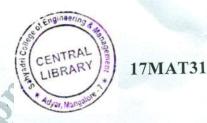
(06 Marks)

c. Find z-transforms of: i) $a^n \sin n\theta$ ii) $a^{-n} \cos n\theta$.

(06 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice.



OR

Find Fourier sine transform of $f(x) = e^{-|x|}$ and hence evaluate : $\int_{0}^{\infty} \frac{x \sin mx}{1 + x^2} dx, m > 0$.

(08 Marks)

Find z-transform of $u_n = \cos h \left(\frac{n\pi}{2} + \theta \right)$.

(06 Marks)

Solve the difference equation using z-transforms $u_{n+2} + 6u_{n+1} + 9u_n = 2^n$. Given $u_0 = u_1 = 0$.

Module-3

If θ - is the acute angle between the two regression lines relating the variables x and y, show

that
$$Tan\theta = \left(\frac{1-r^2}{r}\right)\left(\frac{\sigma_x \sigma_y}{\sigma_x^2 \sigma_y^2}\right)$$
.

(08 Marks)

Indicate the significance of the cases $r = \pm 1$ and r = 0.

b. Fit a straight line y = ax + b for the data.

		20
70	100	120
	70	70 100

(06 Marks)

Find a real root of the equation by using Newton-Raphson method near x = 0.5, $xe^x = 2$, (06 Marks) perform three iterations.

Compute the coefficient of correlation and equation of regression of lines for the data:

X	1	2	3	4	5	6 7
У	9	(8)	10	12	11	13 14

(08 Marks)

b. The Growth of an organism after x – hours is given in the following table:

(A)	A		100	W/			
x (hours)	5	15	20	30	35	40	
y (Growth)	10	14	25	40	50	62	

Find the best values of a and b in the formula $y = ae^{bx}$ to fit this data.

(06 Marks)

Find a real root of the equation $\cos x = 3x - 1$ correct to three decimals by using Regula – False position method, given that root lies in between 0.6 and 0.7. Perform three iterations. (06 Marks)

- a. Find y(8) from y(1) = 24, y(3) = 120, y(5) = 336, y(7) = 720 by using Newton's backward (08 Marks) difference interpolation formula.
 - b. Define f(x) as a polynomial in x for the following data using Newton's divided difference (06 Marks) formula.

X	-4	-1	0	2	5
f(x)	1245	33	5	9	1335

c. Evaluate the integral $I = \int_{0}^{6} \frac{dx}{4x+5}$ using Simpson's $\frac{1}{3}$ rd rule using 7 ordinates. (06 Marks)

OR

8 a. For the following data calculate the differences and obtain backward difference interpolation polynomial. Hence find f(0.35). (08 Marks)

X	0.1	0.2	0.3	0.4	0.5
f(x	1.40	1.56	1.76	2.0	2.28

b. Using Lagrange's interpolation find y when x = 10.

X	5	6	9	11
y	12	13	14	16

(06 Marks)

c. Evaluate $\int_{0}^{1} \frac{x}{1+x^2} dx$ by Weddle's rule considering seven ordinates.

(06 Marks)

Module-5

- 9 a. Verify the Green's theorem in the plane for $\int_{c} (x^2 + y^2) dx + 3x^2 y dy$ where C is the circle $x^2 + y^2 = 4$ traced in positive sense. (08 Marks)
 - b. Evaluate $\int_{c} (\sin z. dx \cos x dy + \sin y dx)$ by using Stokes theorem, where C is the boundary of the rectangle $0 \le x \le \pi$, $0 \le y \le 1$ and z = 3. (06 Marks)
 - c. Find the curve on which the functional: $\int_{0}^{1} [y'^{2} + 12xy] dx \text{ with } y(0) = 0, y(1) = 1 \text{ can be extremised.}$ (06 Marks)

OR

- 10 a. Given $f = (3x^2 y)i + xzj + (yz x)k$ evaluate $\int_{c}^{c} f \cdot dr$ from (0, 0, 0) to (1, 1, 1) along the maths y = t, $y = t^2$ and $z = t^3$ (08 Marks)
 - b. Derive Euler's equation in the form $\frac{\partial f}{\partial y} \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$. (06 Marks)
 - c. Prove that the shortest distance between two points in a plane is a straight line. (06 Marks)

* * * * *