

14MAT21

Second Semester B.E. Degree Examination, June/July 2018 Engineering Mathematics – II

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting ONE full question from each module.

Module - 1

1 a. Solve:
$$\frac{d^2y}{dt^2} + \frac{dy}{dt} + 13y = e^{3t}\cosh 2t + 2^t$$
. (06 Marks)

b. Solve:
$$y'' - 4y' + 4y = 8\cos 2x$$
. (07 Marks)

c. Solve
$$y'' + 4y = x^2 + e^{-x}$$
 by the method of undetermined coefficients. (07 Marks)

OR

2 a. Solve:
$$(4D^4 - 8D^3 - 7D^2 + 11D + 6)y = 0$$
. (06 Marks)

b. Solve:
$$y'' + 4y' - 12y = e^{2x} - 3\sin 2x$$
. (07 Marks)

c. Solve by the method of variation of parameters
$$y'' + 2y' + 2y = e^{-x} \sec^3 x$$
. (07 Marks)

Module – 2

3 a. Solve:
$$\frac{dx}{dt} + 2y = -\sin t$$
, $\frac{dy}{dt} - 2x = \cos t$. (06 Marks)

b. Solve:
$$x^4 \frac{d^3y}{dx^3} + 2x^3 \frac{d^2y}{dx^2} - x^2 \frac{dy}{dx} + xy = \sin(\log x)$$
. (07 Marks)

c. Solve:
$$xy\left(\frac{dy}{dx}\right)^2 - (x^2 + y^2)\frac{dy}{dx} + xy = 0$$
, using solvable for P. (07 Marks)

4 a. Solve:
$$\frac{dy}{dx} + y = z + e^x$$
, $\frac{dz}{dx} + z = y + e^x$. (06 Marks)

b. Solve:
$$(3x+2)^2 y'' + 3(3x+2)y' - 36y = 8x^2 + 4x + 1$$
. (07 Marks)

c. Show that the equation,
$$xp^2 + px^2 py + 1 - y = 0$$
 is Clairaut's equation. Hence obtain the general and singular solution. (07 Marks)

Module - 3

5 a. Form the partial differential equation by eliminating the arbitrary function in
$$\phi(x+y+z, x^2+y^2+z^2)=0$$
 (06 Marks)

b. Derive one dimensional wave equation in the form,
$$\frac{\partial^2 u}{\partial t^2} = C^2 \frac{\partial^2 u}{\partial x^2}$$
. (07 Marks)

c. Evaluate:
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} xyzdzdydx.$$
 (07 Marks)

14MAT21

- 6 a. Solve $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$ given that u = 0 when t = 0 and $\frac{\partial u}{\partial t} = 0$ at x = 0. Also show that (06 Marks)
 - Derive one dimensional heat equation in the form, $\frac{\partial u}{\partial t} = C^2 \frac{\partial^2 u}{\partial x^2}$ (07 Marks)
 - c. Evaluate $\int_{0}^{1} \int_{x^2}^{2-x} xy dy dx$ by changing the order of integration.

 Module -4a. Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ by double integration. (07 Marks)

- (06 Marks)
 - b. Show that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$ (07 Marks)
 - Express the vector $\vec{A} = z\hat{i} 2x\hat{j} + y\hat{k}$ in cylindrical coordinates. (07 Marks)

- Find the volume generated by the revolution of the cardioide $r = a(1 + \cos\theta)$ about the initial line. (06 Marks)
 - b. Show that $\int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{\sin \theta}} \times \int_{0}^{\frac{\pi}{2}} \sqrt{\sin \theta} d\theta = \pi$ (07 Marks)
 - Show that spherical polar coordinate system is orthogonal. (07 Marks)

- a. Find the Laplace transform of $2^{t} + \frac{\frac{\text{Module} 5}{\cos 2t \cos 3t}}{t} + t \sin t$ (06 Marks)
 - b. If $f(t) = \begin{cases} t, & 0 \le t \le a \\ 2a t, & a \le t \le 2a, f(t + 2a) = f(t) \end{cases}$

then (i) Sketch the graph of f(t) as a periodic function.

- (ii) Show that $L\{f(t)\} = \frac{1}{s^2} \tanh\left(\frac{as}{2}\right)$ (07 Marks)
- c. Solve y''' + 2y'' y' 2y = 0 given y(0) = y'(0) = 0 and y''(0) = 6 by using Laplace transform method. (07 Marks)

- Find the Laplace transform of t²e^{-3t} sin 2t. (06 Marks)
 - Express the following function interms of Heaviside unit step function and hence find its Laplace transform:

$$f(t) = \begin{cases} \cos t, & 0 < t < \pi \\ \cos 2t, & \pi < t < 2\pi \\ \cos 3t, & t > 2\pi \end{cases}$$
 (07 Marks)

c. Using convolution theorem obtain the inverse Laplace transform of:

$$(67 \text{ Marks})$$