

14MAT11

First Semester B.E. Degree Examination, June/July 2017 Engineering Mathematics – I

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least ONE question from each part.

Module-1

1 a. Find the nth derivative of $y = \sin^2 x \sin h^2 x + \log_{10} (x^2 - 3x + 2)$. (07 Marks)

Find the pedal equation for the curve $r = a + b \cos \theta$. (06 Marks)

c. Obtain radius of curvature for the parametric curve, $x = a(t - \sin t)$ $y = a(1 - \cos t)$.

(07 Marks)

2 a. If $y = \tan^{-1} x$, prove that $(1 + x^2)y_{n+2} + 2(n+1)xy_{n+1} + n(n+1)y_n = 0$. Hence obtain $y_n(0)$. (07 Marks)

b. Find the angle of intersection between the curves $r = 2 \sin \theta$; $r = 2(\sin \theta + \cos \theta)$. (06 Marks)

c. Find the radius of curvature for the polar curve $r^2 = a^2 \cos 2 \theta$. (07 Marks)

Module-2

3 a. Evaluate: $\lim_{x\to 0} (\cos x)^{\cot^2 x}$. (06 Marks)

b. Determine Maclarin's series for the function for $f(x) = \log (1 + \cos x)$ upto term containing x^4 . (07 Marks)

c. If u = f(2x - 3y, 3y - 4z, 4z - 2x) then obtain the value of $\frac{1}{2} \frac{\partial u}{\partial x} + \frac{1}{3} \frac{\partial u}{\partial y} + \frac{1}{4} \frac{\partial u}{\partial z}$. (07 Marks)

4 a. Find total derivative of u with respect to t where $u = tan^{-1}x/y$, $x = e^{t} - e^{-t}$, $y = e^{t} + e^{-t}$.

(06 Marks)

b. If $u = \frac{x}{y-z}$, $v = \frac{y}{z-x}$, $w = \frac{z}{x-y}$, find the Jacobian $\frac{\partial(u,v,w)}{\partial(x,y,z)}$. Determine whether u, v and w are functionally dependent. (07 Marks)

c. If x y z be the angles of a triangle, show that the maximum value of sin x sin y sin z is $\frac{3\sqrt{3}}{8}$.

(07 Marks)

5 a. A particle moves along $x = t^3 - 4t$, $y = t^2 + 4t$, $z = 8t^2 - 3t^3$, where 't' denotes time. Find the magnitudes of velocity and acceleration at time t = 2. (07 Marks)

b. Assuming the validity of differentiation under integral sign prove that $\int_{0}^{\infty} e^{-x^{2}} \cos \alpha x dx = \frac{\sqrt{\pi}}{2} e^{-\alpha^{2}/4}.$ (07 Marks)

c. Trace the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$, using general rules of tracing the curve. (06 Marks)

14MAT11

6 a. If $\overrightarrow{F} = \text{grad}(x^3 + y^3 + z^3 - 3xyz)$ find curl \overrightarrow{F} . Is \overrightarrow{F} irrotational?

(07 Marks)

b. Prove that if \overrightarrow{F} is a vector point function div (curl \overrightarrow{F}) = 0.

- (07 Marks)
- c. If \overrightarrow{r} is a position vector of a point in space obtain div \overrightarrow{r} and curl \overrightarrow{r} .
- (06 Marks)

Module-4

7 a. Solve $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$.

- (07 Marks)
- b. Obtain the reduction formula for $\int_{0}^{\pi/2} \cos^{n} x \, dx$, where 'n' is a positive integer. (07 Marks)
- c. A body originally at 80°C cools down to 60°C in 20 minutes, the temperature of air being 40°C. What will be the temperature of the body after 40 minutes from the original? (06 Marks)
- 8 a. Show that family $\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1$ with λ as a parameter is self orthogonal. (07 Marks)
 - b. Evaluate: $\int_{0}^{2a} x^{3} \sqrt{2ax x^{2}} dx$. (07 Marks)
 - c. Solve: $(y^2e^{xy^2} + 4x^3) dx + (2xye^{xy^2} + 3y^2) dy = 0$.

(06 Marks)

Module-5

9 a. Solve by gauss elimination method:

$$2x - 3y + 4z = 7$$

$$5x - 2y + 2z = 7$$

$$6x - 3y + 10z = 23$$
.

- (07 Marks)
- b. Reduce the quadratic form: $3x_1^2 + 3x_2^2 + 3x_3^2 + 2x_12x_2 + 2x_1x_3 2x_2x_3$ into canonical form by orthogonal transformation. (07 Marks)
- c. Find the largest eigen value and corresponding eigen vector by Rayeligh's power method

performing five iterations, with $\mathbf{x}^{(0)} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ for $\mathbf{A} = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$. (06 Marks)

10 a. Solve by LU decomposition method:

$$10x + y + z = 12$$

$$2x + 10y + z = 13$$

$$2x + 2y + 10z = 14$$
.

(07 Marks)

b. Diagonalze the matrix $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$. Hence find A^4 .

(07 Marks)

c. Solve by Gauss Seidel iteration method:

$$20x + y - 2z = 17$$

$$3x + 20y - z = -18$$

$$2x - 3y + 20z = 25$$

Perform 3 iterations.

(06 Marks)