

Third Semester B.E. Degree Examination, June/July 2019 Engineering Mathematics – III

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Obtain the Fourier series expansion of $f(x) = x x^2$ in $(-\pi, \pi)$ and hence deduce that $\frac{\pi^2}{12} = \frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \dots$ (06 Marks)
 - b. Find the half range Fourier cosine series of $f(x) = (x-1)^2$ in $0 \le x \le 1$. (07 Marks)
 - c. Obtain the constant ter n and the coefficients of the first cosine and sine terms in the Fourier expansion of y from the following table:

 (07 Marks)

X	0	1	2	3	14	5
У	9	18	24	28	26	20

2 a. Find the Fourier transform of f(x) defined by $f(x) = \begin{cases} 1, & \text{for } |x| \le a \\ 0, & \text{for } |x| > a \end{cases}$. Hence evaluate

$$\int_{0}^{\infty} \frac{\sin x}{x} dx. \qquad (06 \text{ Marks})$$

- b. Find the Fourier sine and cosine transforms of $f(x) = e^{-\alpha x}$, $\alpha > 0$. (07 Marks)
- c. Find the function f(x) whose Fourier cosine transform is given by, $F(\alpha) = \begin{cases} a \frac{\alpha}{2}, & 0 \le \alpha \le 2a \\ 0, & \alpha > 2a \end{cases}$ (07 Marks)
- 3 a. Obtain the various possible solutions of two dimensional Laplace equation, $u_{xx} + u_{yy} = 0$ by the method of separation of variables. (06 Marks)
 - b. Solve the wave equation $u_{tt} = e^2 u_{xx}$ subject to the conditions u(0, t) = 0, u(1, t) = 0, $\frac{\partial u}{\partial t} = 0$ when t = 0 and u(x, 0) = f(x). (07 Marks)
 - c. Obtain the D'Alembert's solution of the one dimensional wave equation $u_{tt} = e^2 u_{xx}$.

 (07 Marks)
- 4 a. Fit a curve of the form, $y = ab^x$ for the data and hence find the value of y at x = 8.

X	1	2	3	4	5	6	7
у	87	97	113)	129	202	195	193

(06 Marks)

- b. Solve the following LPP graphically, Maximize z = 3x + 5ySubject to $x + 2y \le 2000$, $x + y \le 1500$, $y \le 600$, $x \ge 0$, $y \ge 0$ (07 Marks)
- c. Use simplex method to maximize z = x + 1.5ySubject to $x + 2y \le 160$, $3x + 2y \le 240$, $x \ge 0$, $y \ge 0$. (07 Marks)

PART-B

- 5 a. Use Regula Falsi method to find a real root of the equation, $x \log_{10} x 1.2 = 0$. Carry out three iterations. (06 Marks)
 - b. Use Gauss-Seidal method to solve : x + 4y + 2z = 15, x + 2y + 5z = 20, 5x + 2y + z = 12. Perform 3 iterations. (07 Marks)
 - c. Find numerically largest eigen value and the corresponding eigen vector of the matrix,

$$A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$$
 by taking the initial approximation to the eigen vector as

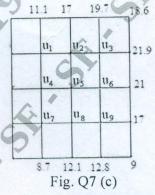
- $[1, 0.8, -0.8]^T$. Perform four iterations. (07 Marks)
- 6 a. A survey conducted in a slum locality reveals the following information as classified below,

Income per day (Rs.)	0-10	10 - 20	20 - 30	30 - 40	40 - 50
No. of persons	20	45	115	210	115

- Estimate the probable number of persons in the income group 20 to 25. (06 Marks)
- b. Use Newton's divided difference formula to find f(15) from the following data: (07 Marks)

X	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028
	1.0					

- c. Use Simpson's one-third rule to evaluate $\int_{2}^{8} \frac{dx}{\log_{10} x}$ by taking 7 ordinates. (07 Marks)
- 7 a. Solve the wave equation $u_{tt} = 4u_{xx}$ subject to u(0, t) = 0, u(4, t) = 0, $u_{t}(x,0) = 0$, u(x,0) = x(4-x) by taking h = 1, K = 0.5 upto four steps. (06 Marks)
 - b. Find the numerical solution of the parabolic equation $u_{xx} = 2u_t$ when u(0,t) = 0 = u(4,t) and u(x,0) = x(4-x) by taking h = 1, find the values up to t = 5. (07 Marks)
 - c. Solve Laplace equation $u_{xx} + u_{yy} = 0$ for the following square with boundary values as shown in the following Fig. Q7 (c). (07 Marks)



8 a. Find the z-transform of $cos n\theta$ and $sin n\theta$.

(06 Marks)

b. Find the inverse z-transform of $\frac{3z^2 + 2z}{(5z-1)(5z+2)}$

- (07 Marks)
- c. Solve the difference equation, $u_{n+2} + 6u_{n+1} + 9u_n = 2^n$ with $u_0 = u_1 = 0$ using z transform. (07 Marks)

* * * *