

Third Semester B.E. Degree Examination, Dec.2016/Jan.2017 Engineering Mathematics – III

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

a. Obtain the Fourier series in $(-\pi, \pi)$ for $f(x) = x \cos x$.

(07 Marks)

Obtain the Fourier half range sine series,

$$f(x) = \begin{cases} \frac{1}{4} - x & \text{in } 0 < x < \frac{1}{2} \\ x - \frac{3}{4} & \text{in } \frac{1}{2} < x < 1 \end{cases}$$
 (07 Marks)

Obtain the constant term and the coefficients of the first cosine and sine terms in the Fourier expansion of y from the table.

2 3 5 24 | 28 |

transforms of $f(x) = \begin{cases} 1 - x^2 & \text{for } |x| < 1 \\ 0 & \text{for } |x| \ge 1 \end{cases}$ hence the Fourier

$$\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^{3}} \cos \frac{x}{2} dx . \tag{07 Marks}$$

b. Find the Fourier sine transform of $e^{-|x|}$.

(07 Marks)

c. Find the inverse Fourier sine transform of $\hat{f}_s(\alpha) = \frac{e^{-a\alpha}}{\alpha}$, a > 0.

a. Solve the wave equation $u_{tt} = c^2 u_{xx}$ given that u(0,t) = 0 = u(2l,t), u(x, 0) = 0 and

 $\frac{\partial u}{\partial t}(x,0) = a \sin^3 \frac{\pi x}{2L}$

b. Solve the boundary value problem $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ 0 < x < l, $\frac{\partial u}{\partial x}(0,t) = 0$, $\frac{\partial u}{\partial x}(l,t) = 0$, u(x, 0) = x.

c. Obtain the D'Almbert's solution of the wave equation, $u_{tt} = C^2 u_{xx}$ subject to the conditions

$$u(x,0) = f(x)$$
 and $\frac{\partial u}{\partial t}(x,0) = 0$. (06 Marks)

a. Fit a parabola $y = a + bx + cx^2$ for the data:

(07 Marks)

X	0	1	2	3	4
У	1	1.8	1.3	2.5	2.3

b. Solve by using graphical method the L.P.P.

Minimize z = 30x + 20y

Subject to the constraints: $x - y \le 1$

$$x + y \ge 3$$
, $y \le 4$

and
$$x\geq 0\;,\;y\geq 0$$

(07 Marks)

Maximize z = 3x + 4y

subject to the constraints $2x + y \le 40$, $2x + 5y \le 180$,

$$x \ge 0$$
, $y \ge 0$ using simplex method.

(06 Marks)

1 of 2

10MAT31

PART - B

- 5 a. Find the fourth root of 12 correct to three decimal places by using regula Falsi method.
 - b. Solve 9x-2y+z=50, x+5y-3z=18, -2x+2y+7z=19 by relaxation method obtaining the solution correct to two decimal places. (07 Marks)
 - c. Find the largest eigen value and the corresponding eigen vector of, $\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$ by using

power method by taking initial vector as $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$.

(06 Marks)

(07 Marks)

6 a. The table gives the values of $\tan x$ for $0.10 \le x \le 0.30$

X	0.10	0.15	0.20	0.25	0.30
tanx	0.1003	0.1511	0.2027	0.2553	0.3093

- b. Using Newton's forward and backward interpolation formula, calculate the increase in population from the year 1955 to 1985. The population in a town is given by,

 Year 1951 1961 1971 1981 1991

 Population in thousands 19.96 39.65 58.81 77.21 94.61
- c. Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ taking seven ordinates by applying Simpson's $\frac{3}{8}^{th}$ rule. Hence deduce the value of $\log_{e} 2$. (06 Marks)
- 7 a. Solve the Laplace's equation $u_{xx} + u_{yy} = 0$, given that

(07 Marks)

- b. Solve $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$ subject to u(0,t) = 0; u(4,t) = 0; u(x,0) = x(4-x). Take h = 1, K = 0.5 upto Four steps. (07 Marks)
- c. Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to the condition $u(x, 0) = \sin \pi x$, $0 \le x \le 1$, u(0,t) = u(1,t) = 0 using Schmidt's method. Carry out computations for two levels, taking $h = \frac{1}{3}$, $K = \frac{1}{36}$.
- 8 a. Find the z-transform of, (i) $\cosh n\theta$ (ii) $\sinh n\theta$ (07 Marks)
 - b. Obtain the inverse z-transform of, $\frac{4z^2 2z}{z^3 5z^2 + 8z 4}$. (07 Marks)
 - c. Solve the difference equation, $y_{n+2} + 2y_{n+1} + y_n = n$ with $y_0 = y_1 = 0$ using z-transforms. (06 Marks)