

10ME61

Sixth Semester B.E. Degree Examination, June/July 2015 **Computer Integrated Manufacturing**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

a. Define Automation. Explain the different types of automation.

(08 Marks)

b. Explain the following automation strategies:

Specialization of operator

ii) Online Inspection. (04 Marks)

- c. The parts produced in a certain batch has to be processed through an average of 6 machines. There are 20 new batches of parts launched each week. Other data as follows:
 - i) Average operation time = $0.1 \, \text{Hr}$
- ; ii) Average setup time = 5 Hr ;
- iii) Average non operation time = 10 Hr ; iv) Average Batch size = 25 parts.

There are 18 work centers in the plant and the plant operates for an average of 70 production Hr/week. Determine i) Manufacturing lead time ii) Plant capacity (08 Marks) iv) Plant utilization. Production rate

- a. Explain Synchronous transfer method and Asynchronous transfer method of work transport 2 in automation.
 - b. Explain with neat sketches, the following transfer mechanisms:
 - i) Walking beam transfer bar system
- ii) Geneva mechanism.
- (12 Marks)
- Explain the following related to analysis of an automated flow lines:
 - a. Partial automation.
 - b. Lower bound approach.
 - c. Upper bound approach.
 - d. Effect of storage.

(20 Marks)

(06 Marks)

- a. Explain the following terms related to line balancing:
- iii) Line balancing.
- Total work context time ii) Assembly line balance b. The table below defines the precedence relationships and elements times for a new model:
- Construct the precedence diagram
 - ii) If the Ideal time = 1 min
 - iii) Use Kilsridge and Westers method to assign the work station to each element and compute the balance delay and line efficiency. (14 Marks)

Work element	1	2	3	4	5	6	7	8	9	10	11	12
Te(min)	0.25	0.45	0.35	0.4	0.32	0.2	0.27	0.7	0.6	0.38	0.5	0.43
Preceded by	- *	1	1	1	2	2,3	4	4	5	6,7	8	9,10,11

PART - B

- a. List the principles used in product design for automated assembly.
- (06 Marks)

b. With a neat sketch, explain elements of parts delivery system.

(08 Marks)

c. Define AGVS. List the advantages and applications of AGVS.

(06 Marks)

10ME61

(08 Marks)

6 With a block diagram, explain variant CADD system. (10 Marks)

What is Material requirement? Explain the structure of a MRP system. (10 Marks)

7 a. Discuss the advantages and disadvantages of CNC systems. (10 Marks)

b. Explain the fundamental steps involved in part programming for turning and milling. (10 Marks)

(12 Marks) 18A2 8 a. Explain the different configuration of robot, with neat sketches.

b. Explain the following terms related to robots:

ONLINE THE STATE OF THE STATE O

i) End effectors ii) Programming methods.