

10ME74

Seventh Semester B.E. Degree Examination, Dec.2018/Jan.2019 **Operations Research**

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, selecting atleast TWO questions from each part. 2. Use of normal distribution chart is permitted.

PART - A

a. List and explain different phases of operations research.

(06 Marks)

b. Solve the following LP problem graphically:

$$Minimize z = 2x_1 + 1.5x_2$$

Subject to
$$x_1 + x_2 = 50$$

$$0.15x_1 - 0.05x_2 \ge 0$$

$$0.02x_1 - 0.03x_2 \ge 0$$

$$-0.05x_1 + 0.15x_2 \ge 0$$
$$x_1, x_2 \ge 0.$$

(14 Marks)

Solve the following LPP by Big-M method:

$$Minimum Z = 2x_1 + x_2$$

Subject to
$$3x_1 + x_2 = 3$$

$$4x_1 + 3x_2 \ge 6$$

$$x_1 + 2x_2 \le 3$$

$$x_1, x_2 \geq 0.$$

(15 Marks)

b. Write the dual of the following LPP

maximum
$$Z = 3x_1 + 2x_2 + 1x_3$$

$$5x_1 + 2x_2 + 3x_3 = 6$$

$$2x_1 + 3x_2 + x_3 \ge 2$$
$$x_1 + 2x_2 + 6x_3 = 3$$

$$x_1 + 2x_2 + 6x_3 = 5$$

$$x_1, x_2, x_3 \ge 0$$
.

(05 Marks)

- Obtain basic feasible solution for the following transportation problem by
 - i) North-West corner rule
 - ii) Matrix minima method
 - iii) Penalty method.

(10 Marks)

To	1	1 2		3 4		Capacity		
Form		7						
A	4 5	8	6	6	3	800		
B	4	7	7	6	5	500		
C	8	4	4	6	4	900		
Demand	400	400	500	400	800			

b. Solve the travelling salesman problem for the following data:

$$C_{12} = 20$$
 $C_{13} = 4$

$$C_{13} = 4$$

$$C_{14} = 10$$

$$C_{35} = 6$$

$$C_{23} = 5$$

$$C_{25} = 10$$

$$= 6$$
 $C_{54} = 2$

Where $C_{ij} = C_{ji}$ and there is no route between cities i and j the values for C_{ij} is not given.

(10 Marks)

4 Solve the following integer programming problem by Gomory cutting plane method:

Maximum $Z = 3x_1 + 4x_2$ Subject to $2x_1 + x_2 \le 6$

 $2x_1 + 3x_2 \le 9$

 $x_1, x_2 \ge 0$ and integers.

(20 Marks)

PART-B

- 5 a. Explain the Fulkerson rule of numbering of nodes with the help of an example. (05 Marks)
 - b. A project consists of the activities as given in the table below:

	49		40			
	Immediate	Time in weeks				
Activity	predecessor	t ₀	t _p	₹ tℓ		
A	_	1	7	1		
В	B A C -		1 7			
0			8	2		
D	B, C	1>	1	1		
E	C	2	14	5		
F	A, C	/ 2	8	5		
G	D	3	15	6		

- i) Draw the project network and find the critical path.
- ii) What is the probability of completing the project in 17 weeks?

(10 Marks)

(05 Marks)

6 a. Briefly explain the characteristics of queue.

(06 Marks)

- b. A barbar runs a one-man shop. Customers arrive on FCFS basis follows a Poisson pattern with a mean arrival rate of 30/hour. The barbar's service time appears to be exponentially distributed with a mean of 1.5 minute. Determine?
 - i) The expected number of customers in the shop
 - ii) The expected number of customers waiting for service
 - iii) The average time a customer should expect to wait for service
 - iv) The probability that the service is idle.

(14 Marks)

- 7 a. Briefly explain the following terms with reference to game theory:
 - i) Saddle point ii) Pure strategy iii) Pay-off iv) Mixed strategy.

(08 Marks)

- b. Two players A and B playing matching coins game in which each player has 4 coins; a 1 Rs, a 2 Rs., a 5 Rs and a 10 Rs. Each player selects a coin without the knowledge of others choice. If the sum of the coins amount is an odd, player—A wins player—B's coin. If the sum the coins amount is even, B wins A's coin. Formulate this problem as game theory problem and find the optimal strategies for each player and game value. (12 Marks)
- 8 a. Briefly explain the Johnson algorithm for finding the sequence for 'n' jobs through 2 machines. (04 Marks)
 - b. Find the sequence that minimizes the total elapsed time required to complete the following

				the second second			
Task	A	В	C	D	E	F	G
Time on M/c-1(Hrs)	3	8	7	4	9	8	7
Time on M/c-2(Hrs)	4	3	2	5	1	4	3
Time on M/c-3(Hrs)	6	7	5	11	5	6	12

Also find the percentage of utilization and idle time of each machine.

(16 Marks)