

USN						

10ME831

Eighth Semester B.E. Degree Examination, June/July 2018 **Tribology**

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part.
2. Use of Design data handbook permitted.

PART - A

- a. Explain the principle of working of a falling sphere viscometer.
 b. Explain briefly the factors affecting viscosity.
 (06 Marks)
 (04 Marks)
 - c. Derive an expression for the flow of oil between parallel stationary plates. (10 Marks)
- 2 a. Derive the expressions for frictional force, torque and coefficient of friction for a lightly loaded journal bearing.

 (08 Marks)
 - b. Explain the formation of continuous oil film in a full journal bearing. (06 Marks)
 - 80mm, Bearing Length = 60mm, Diametral clearance = 0.12mm, Journal speed = 24000rpm, Viscosity of the Lubricating oil = 4cp, Radial load = 900N. Determine:
 - i) Frictional Force
 - ii) Torque
 - iii) Power loss
 - iv) Coefficient of friction.

(06 Marks)

- 3 Derive the Reynold's equation in two dimensions, Also state the assumptions. (20 Marks)
- 4 a. A rectangular plain slider bearing with fixed shoe with no end leakage has the following data Bearing length = 90mm, Width of shoe = 90mm, Load on bearing = 7800N, Slider velocity = 250 cm/sec, Inclination α = -0.00035 radians, Viscosity of oil η = 40CP. Determine:
 - i) Minimum film thickness
 - ii) Power loss
 - iii) Coefficient of friction.

(10 Marks)

- b. A pivoted shoe of the slider bearing has square shape. The load acting on the bearing is 13344N velocity of moving member in 5.08 m/sec, lubricating oil is SAE 40. The expected mean temperature of oil film is 90°C permissible minimum oil film thickness is 1.905×10⁻⁵m.
 - i) Required dimensions of the shoe
 - ii) Coefficient of friction in the bearing under given operating condition
 - iii) Power loss.

Assume inclination of surface corresponds to maximum load carrying capacity. Neglect effect of end flow from the bearing. (10 Marks)

10ME831

PART - B

- 5 a. Discuss thermal equilibrium of Journal bearing. (08 Marks)
 - b. A full journal bearing with circumferential oil groove is lubricated under pressure and has the following specifications. Journal diameter = 62.5mm, Total length of bearing = 125mm, Width of circumferential groove = 6.25mm, Radial clearance = 0.04375mm, Effective oil temperature = 100°C, Lubricating oil = SAE 20, Minimum oil film thickness = 0.004375mm. Determine the inlet pressure required in order to control the bearing temperature. The rate of oil flow through the bearing is to be 4925 mm³/s. (12 Marks)
- 6 a. Derive the expression for rate of flow of oil and load carrying capacity for an hydrostatic step bearing.

 (12 Marks)
 - b. A hydrostatic step bearing has the following specifications. Diameter of shaft = 150mm. Pocket diameter = 102mm, Vertical thrust of bearing = 40kN, shaft speed 900rpm, Viscosity of lubricant = 25×10⁻³ Pa.s, Oil film thickness = 0.15mm, External pressure = Zero. Find
 - i) Required inlet pressure
 - ii) Rate of flow through the bearing
 - iii) Power loss due to viscous friction.

(08 Marks)

(05 Marks)

(05 Marks)

- 7 a. Enlist the properties of good bearing materials
 - List out commonly used bearing materials
 - c. Define wear. Explain types of wear with simple sketches.

(10 Marks)

- **8** Write short notes on any Four
 - a. Wear of ceramic materials
 - b. Wear of polymers
 - c. Wear measurement
 - d. Surface engineering
 - e. Improved design.

(20 Marks)