

Third Semester B.E. Degree Examination, Dec.2017/Jan.2018 **Basic Thermodynamics**

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, selecting atleast TWO questions from each part. 2. Use of steam tables, gas tables, charts etc are permitted.

PART - A

- 1 Distinguish between the followings with example:
 - Macroscopic and microscopic view point.
 - ii) Thermodynamic system and control volume.
 - iii) Extensive and intensive property.
 - iv) Thermal equilibrium and thermodynamic equilibrium.
 - v) Quasi static and spontaneous process.

(10 Marks) b. State Zeroth law of thermodynamics and explain the working of constant volume gas thermometer. (05 Marks)

- The e.m.f. in a thermocouple with test junction at toc on the gen thermometer scale and reference junction at ice point is given by $E = 0.2t - 5 \times 10^{-4}t^2$, mV. The milli voltmeter is calibrated at ice point and steam points. What will this thermometer read in a place where gen thermometer reads 50°C? (05 Marks)
- 2 State and explain the thermodynamic work with an example.

(06 Marks)

- Determine the work transfer for the following cases:
 - Electrical work
 - ii) Shaft work iii) Flow work
 - iv) Stretching a wire and
 - v) Changing the area of a surface film.

(05 Marks)

- c. What are the similarities and dissimilarities between work transfer and heat transfer?

- (05 Marks) When the valve of an evacuated bottle is opened, atmospheric air rushes into it. If the atmospheric pressure is 101.325 kPa, and 0.6 m³ of air enters into the bottle. Calculate the work done by the air. (04 Marks)
- 3 With the help of Joules experiment, explain the first law of thermodynamics for a closed system. Also state its limitation. (07 Marks)
 - b. Show that energy is a property of the system.

(05 Marks)

- Write down the energy equation for flow processes and reduce the same for the followings with significance:
 - Steady flow energy equation
 - ii) Nozzle
 - iii) Throttling device
 - iv) Compressor
 - v) Filling of an evacuated tank.

(08 Marks)

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank page

10ME/AU33

4 a. State Kelvin-Plank and Clausius statement of second law of thermodynamics and show that former is equivalent to later.

(08 Marks)

b. What are the causes of irreversibility? Explain how it makes a process irreversible (any one).
(07 Marks)

c. Which is the more effective way to increase the efficiency of a Carnot engine: to increase T_1 , keeping T_2 constant or to decrease T_2 , keeping T_1 constant? (05 Marks)

PART-B

5 a. State and derive the inequality of Clausius.

(07 Marks)

b. Explain the principle of entropy.

(05 Marks)

- c. Three identical finite bodies of constant heat capacity are at temperatures 300, 300 and 100K. If no heat and work are supplied from out-side, what is the highest temperature to which any one of the bodies can be raised by the operation of heat engines or refrigerators.

 (08 Marks)
- 6 a. Explain phase equilibrium diagram of water with aid of p-v and p-T diagram. Why does fusion line have negative slope?

 (09 Marks)
 - b. Explain the construction of T-S diagram for a pure substance i.e. 1 kg of ice at -5°C to steam at 150°C (06 Marks)
 - c. Explain any one method of determination of dryness fraction of steam. (05 Marks)
- 7 a. Show that for an ideal gas the internal energy depends only on its temperature. (08 Marks)
 - b. Write down the first and second T_{dS} equation, and derive the expression for the difference in heat capacities, c_p and c_v . What does the expression signify? (12 Marks)
- 8 a. Write down the Vander Waals equation of state. How it differs from ideal gas equation of state? Explain. (06 Marks)
 - b. With aid of compressibility chart for nitrogen, explain how it deviates from ideal gas equation. (06 Marks)
 - c. A mixture of ideal gas contains of 3kg of nitrogen, and 5kg of carbon dioxide at a pressure of 300kPa and a temperature of 20°C. Find:
 - i) Mole fraction of each constituent.
 - ii) The equivalent molecular weight of the mixture.
 - iii) The equivalent gas constant of the mixture, and
 - iv) The partial pressure of mixture.

(08 Marks)