

15EC663

USN

Sixth Semester B.E. Degree Examination, June/July 2018 Digital System Design Using Verilog

Time: 3 hrs. Max. Marks: 80

Note: Answer FIVE full questions, choosing one full question from each module.

Module-1

- a. What are the two sources of power consumption in digital components? Explain. (04 Marks)
 - b. Develop a verilog model for a 4:1 multiplexer.

(04 Marks)

c. Design an encoder for the buglar alarm that has sensors for each of the 8 zones as a priority encoder with zone 1 having highest priority down to zone 8 having lowest priority.

(08 Marks)

OR

- 2 a. Explain the simple design methodology followed in IC industry. (08 Marks)
 - b. Develop a datapath to perform complex multiplication of two complex number whose real and imaginary parts are represented as signed fixed point numbers with 4-pre binary points and 12 post-binary points. Real and imaginary parts of the product are represented with 8 pre-binary points and 24 post-binary points. Area is the main constraint. Also write the verilog model of the complex multiplier datapath. (08 Marks)

Module-2

- 3 a. Design a lm×8 bit composite memory using 512 K ×8 bit memory component. (04 Marks)
 - b. Design a $16K \times 48$ bit memory using $16K \times 16$ bit memory component.

(04 Marks)

c. Explain flowthrough and pipelined SSRAM with the help of timing diagram.

(08 Marks)

OR

4 a. Determine whether there is an error in the ECC word 000111606100 and if so, correct it.

(06 Marks)

- b. Develop a verilog model of a dual port 4K×16 bit flow through SSRAM. One port allows data to be written and read, while the other port allows data to be read. (06 Marks)
- c. Explain dynamic RAM operation.

(04 Marks)

Module-3

5 a. Write and explain the internal organization of a CPLD.

(08 Marks)

b. What are the two main design and manufacturing techniques for ASIC's. Explain. (08 Marks)

OR

6 a. Write and explain the internal organization of FPGΛ.

(08 Marks)

b. Explain differential signaling in detail.

(08 Marks)

Module-4

- 7 a. Explain Flash ADC and successive approximation ADC with the help of necessary diagrams. (08 Marks)
 - b. Design an input controller that has 8-bit binary-coded input from a sensor. The value can be read from an 8-bit input register. The controller should interrupt the embedded Gumnut core when the 1/P value changes. The controller is the only interrupt source in the system. Also develop a verilog model of the I/P controller.

 (08 Marks)

15EC663

OR

8 a. Explain the following serial interface standards for connecting I/O devices:

(i) I²C (ii) USB

b. With a neat diagram, explain R-string DAC and R/2R ladder DAC.

(08 Marks)

(08 Marks)

(08 Marks)

(08 Marks)

(10 Marks)

b. Explain floorplan, placement and routing of ASIC physical design.

(06 Marks)

OR

10 a. Explain Built-In Self Test (BIST) techniques.

b. Explain the terms scan design and boundary scan.

(08 Marks)

* * * *