CBCS SCHEME

15EC63

USN

Sixth Semester B.E. Degree Examination, Dec.2019/Jan.2020 VLSI Design

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. Explain the step-by-step CMOS P-Well fabrication process.

(08 Marks)

b. With the mathematical equations, explain velocity saturation and mobility degradation effect due to increase in saturation current. (08 Marks)

OR

- 2 a. With the transfer characteristic of skewed inverter, explain the beta ratio effects. (06 Marks)
 - b. Compare CMOS and bipolar technologies.

(06 Marks)

c. Consider the nMOS transistor in a 180 nm process with a nominal threshold of 0.4V and doping level of 8×10^{17} cm⁻³. The body is tied to ground with a substrate contact. How much does the threshold change at room temperature if the source is at 1.1V instead of '0'?

(04 Marks)

Module-2

- 3 a. Discuss the λ-based design rules (i) Butting contact (ii) Transistors (nMOS, pMOS and CMOS) (08 Marks)
 - b. Derive the expression of delay interms of τ for CMOS inverter pair.

(08 Marks)

OR

4 a. Draw the layout for $\overline{Y} = A + BC$ using CMOS

(08 Marks)

b. Find the C_{in} for the layout shown in Fig.Q4(b).

(08 Marks)

Module-3

5 a. Define scaling. Explain the scaling factors for device parameters.

(08 Marks)

b. What is Manchester Carry Chain? Explain it.

(08 Marks)

OR

- 6 a. What are the problems associated with VLSI design and how to reduce by using standard practice? (06 Marks)
 - (06 Marks)

c. Calculate the Regularity for 4×4 bit and 8×8 bit shifter.

b. Draw the 4×4 cross bar switch using MOS switches and explain it.

(04 Marks)

1 of 2

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

Module-4

7 a. Construct a stick diagram for an nMOS parity generator as shown in Fig.Q7(a). The required response is such that z = 1 if there is an even number (including zero) of 1s on the input and z = 0 if there is an odd number.

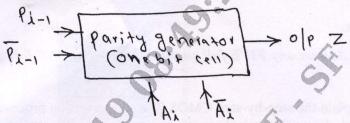


Fig.Q7(a)

(08 Marks)

b. Draw the block diagram of Generic structure of an FPGA fabric and explain it. (08 Marks)

OR

8 a. Construct a stick diagram for an multiplexer shown in Fig.Q8(a) using CMOS.

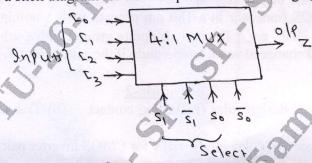


Fig.Q8(a)

(08 Marks)

b. Explain the goals and techniques of FPGA based system design.

(08 Marks)

- Module-5
- 9 a. What are the requirements for system timing considerations? (06 Marks)
 b. Explain the operation of a three transistor dynamic RAM cell. (06 Marks)
 - c. Write a note on stuck at faults.

(04 Marks)

- OR
- 10 a. With the help of block diagram, explain the process of logic verification. (08 Marks)
 - b. Explain the operation of CMOS pseudo-static memory cell.

(08 Marks)

* * * * *