

10EC63

Sixth Semester B.E. Degree Examination, June/July 2015 Microelectronics Circuits

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE questions, selecting THREE from Part-A and TWO from Part-B.

PART-A

- 1 a. Derive the $i_D V_{DS}$ relationship of a MOSFET for triode and saturation region. (12 Marks)
 - b. For a MOSFET process technology with W/L = 8 μ m/0.8 μ m, t_{ox} = 8nm, ϵ_r = 3.9 μ h = 450 cm²/v.s and v_t = 0.7 V.
 - i) Find Cox and K'n.
 - ii) Calculate the values of V_{GS} and V_{DSmin} needed to operate the transistor in the saturation region with a dc current $I_D = 100 \mu A$.
 - iii) For the device to operate as a 1000 Ω resistor find the value of V_{GS} required for very small V_{DS}. (08 Marks)
- 2 a. Derive the expression for input resistance, output resistance, voltage gain and overall gain of a grounded source amplifier with a neat diagram. (08 Marks)
 - b. Design the biasing circuit shown in Fig.Q.2(b) to establish a drain current $i_D = 0.5 \text{mA}$.

Fig.Q.2(b)

MOSFET has $v_t = 1V$, $k_n'(W/L) = 1 \text{ mA/v}^2$ and $V_{DD} = 15V$. Assume one-third V_{DD} across R_D and R_S and neglect channel length modulation $\lambda = 0$. Determine percentage change in value of i_D when MOSFET is replaced with another having $v_t = 1.5V$. (12 Marks)

- 3 a. Explain the operation of a MOSFET current steering circuits with necessary expressions.
 - b. What is MOSFET scaling? Compare MOSFET parameters before and after scaling in constant field scaling and constant voltage scaling. (10 Marks)
- 4 a. Explain CMOS implementation of CS amplifier and arrive at voltage gain expression $A_v = g_{ml} r_{ol}/2$. (10 Marks)
 - b. Derive an expression for the short-circuit transconductance G_m of the MOS cascade amplifier. (10 Marks)

(04 Marks)

(08 Marks)

(04 Marks)

- 5 a. Explain operation of MOS differential pair with common-mode input voltage V_{cm} and determine the highest and lowest value of v_{cm} over which the differential pair operates properly.

 (08 Marks)
 - b. For a MOS differential pair in Fig.Q.5(b).

 $V_{DD}=V_{SS}=1.5V,~k_n'(W/L)=4mA/V^2,~v_t=0.5V,~I=0.4mA,~R_D=2.5~K\Omega$ neglect channel length modulation.

- i) Find V_{OV} and V_{GS} for each transistor.
- ii) What is the highest value of V_{an} for Q₁ and Q₂ to remain in saturation?
- iii) If the current source I requires a minimum voltage of 0.4V to operate properly what is the lowest value allowed for V_s and V_{an}? (12 Marks)

PART-B

- 6 a. Discuss with neat diagram the four basic feedback topologies.

 b. Explain the properties of negative feedback.

 (08 Marks)

 (08 Marks)
 - c. What is the general structure of the feedback amplifier?
- Explain the operation and analysis of single op-amp difference amplifier to determine it common mode gain A_{cm}. (10 Marks)
 - b. How op-amp circuits can be used as signal integrator and differentiator and determine the time constants? (10 Marks)
- 8 a. Describe the circuit structure and static operation of CMOS invertor. (08 Marks)
 - b. With example explain PUN and PDN CMOS logic gate circuits.

c. Realize two input NOR gate and two input NAND gate using CMOS gate.

* * * * *