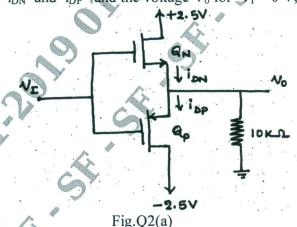


Sixth Semester B.E. Degree Examination, Dec.2018/Jan.2019 Microelectronics Circuits


Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast THREE questions from Part-A and TWO from Part-B.

PART - A

- 1 a. Draw the physical structure and hence explain the operation of NMOS enhancement type transistor. (06 Marks)
 - b. Derive the expression for drain current i_D in triode and saturation region. (06 Marks)
 - c. Consider a CMOS process for which $L_{min}=0.8~\mu m$, $t_{ox}=15~nm$, $\mu_n=550~cm^2/V\text{-s}$ and $V_t=0.7~V$.
 - (i) Find Cox and K
 - (ii) For an NMOS transistor with $\frac{W}{L} = \frac{16 \, \mu m}{8 \, \mu m}$, calculate the values of V_{OV} , V_{GS} and $V_{DS_{min}}$ needed to operate the transistor in the saturation region with a DC current $I_D = 100 \, \mu A$.
 - (iii) For the device in (ii), find the value of V_{OV} and V_{GS} required to cause the device to operate as a 1000 Ω resistor for a very small V_{DS} . (08 Marks)
- 2 a. The NMOS and PMOS transistors in the circuit of Fig.Q2(a) are matched with $K_n'\left(\frac{W_n}{L_n}\right) = K_p'\left(\frac{W_p}{L_p}\right) = 1 \text{ mA}/V^2$ and $V_{in} = -V_{tp} = 1 \text{ V}$. Assuming $\lambda = 0$ for both devices, find the drain currents i_{DN} and i_{DP} and the voltage V_0 for $V_I = 0 \text{ V}$, +2.5 V, -2.5V.

- Fig.Q2(a) (06 Marks) b. Draw the circuit diagram of source follower amplifier. Draw its small signal equivalent circuit with r_0 . Obtain the expression for V_0 , A_V , A_{V_0} , G_V and R_{out} . (10 Marks)
- c. State and prove Miller's theorem.

(04 Marks)

3 a. Draw the MOSFET constant current source circuit and explain its operation. (04 Marks)

b. Given $V_{DD} = 3V$ and using $I_{REF} = 100 \, \mu A$, it is required to design MOSFET constant current source shown in Fig.Q3(b) to obtain an output current whose nominal value is 100 μA . Find R if Q₁ and Q₂ are matched and have channel lengths of 1 μ m, channel widths of 10 μ m, $V_t = 0.7V$, and $K_n' = 200 \, \mu A/V^2$. What is the lowest possible value of V_0 ? Assuming that for this process technology the early voltage $V_A' = 20 \, V/\mu m$, find the output resistance of the current source. Also, find the change in output current resulting from a +1V change in V_0

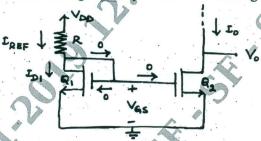


Fig.Q3(b)

(08 Marks)

c. Explain the operation of a MOS current steering circuit and mention its advantages.

(08 Marks)

4 a. A CMOS common source amplifier shown in Fig.Q4(a) is fabricated in a 0.18 μ m technology has $\frac{W}{L} = \frac{7.2 \ \mu m}{0.36 \ \mu m}$ for all transistors, $K_n' = 387 \ \mu A/V^2$, $K_p' = 86 \ \mu A/V^2$,

 I_{REF} = 100 $\mu A,~V_{An}^{'}$ = 5 V/ μm and $\left|V_{Ap}\right|$ = 6 V/ $\mu m.~g_{m_1}$, r_{01} , r_{02} and the voltage gain.

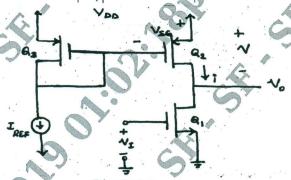


Fig.Q4(a)

(10 Marks)

b. For the high frequency equivalent circuit for a common source MOSFET amplifier shown in Fig.Q4(b). Derive an expression for 3-dB frequency, f_H using Miller's theorem and open circuit time constant.

(10 Marks)

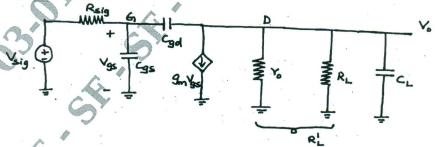


Fig.Q4(b)

5 a. Explain the operation of MOS differential pair with a common mode input voltage.

(04 Marks)

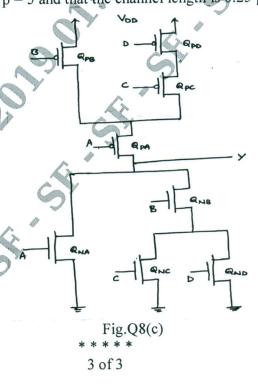
- b. A MOS differential pair is operated at a total bias current of 0.8 mA, using transistors with a W/L ratio of 100, μ_n $C_{ox} = 0.2$ mA/V², $V_A = 20$ V, and $R_D = 5$ k Ω . Find V_{OV} , g_m , r_o and A_d . (08 Marks)
- c. With a neat circuit diagram, explain the operation of two stage CMOS operational amplifier configuration. (08 Marks)

PART - B

6 a. What are the properties of negative feedback? Explain in more detail. (06 Marks)

b. Explain the effect of feedback on the amplifier poles. (06 Marks)

- c. Discuss the method of frequency compensation for modifying open-loop gain A(s) so that the closed loop amplifier is stable, by introducing a new pole in transfer function at sufficiently low frequency.


 (08 Marks)
- 7 a. Design an inverting op-amp circuit to form the weighted sum V_0 of two inputs V_1 and V_2 . It is required that $V_0 = -(V_1 + 5V_2)$. Choose values for R_1 , R_2 and R_f so that for a maximum output of 10 V the current in the feedback resistor will not exceed 1 mA. (04 Marks)

b. Explain in detail dc imperfections of an operational amplifier. (06 Marks)

- c. An op-amp wired in the inverting configuration with the input grounded, having $R_2 = 100k\Omega$ and $R_1 = 1 k\Omega$ has an output DC voltage of -0.3V. If the input bias current is known to be very small, find the input offset voltage. (04 Marks)
- d. Explain how to minimize the temperature effect in a logarithmic amplifier. (06 Marks)
- 8 a. Explain in detail the static and dynamic operation of a CMOS inverter. (08 Marks)
 - b. Sketch a CMOS realization for the function

 $Y = \overline{A + B(C + D)}$ (04 Marks)

c. Provide transistor $\frac{W}{L}$ ratios for the logic circuit shown in Fig.Q8(c). Assume that for the basic inverter n=1.5 and p = 5 and that the channel length is 0.25 μ m. (08 Marks)

