# CBCS SCHEME



| USN |  |  |  |  |  |
|-----|--|--|--|--|--|
|     |  |  |  |  |  |

# Fifth Semester B.E. Degree Examination, Dec.2018/Jan.2019 Verilog HDL

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

# Module-1

- a. Explain top-down design methodology with an example. (06 Marks)
  - b. Explain the typical design flow for designing VLSI IC circuits, with a neat flow chart.

(10 Marks)

#### OR

- 2 a. Explain Bottom-up design methodology with an example. (06 Marks)
  - b. Explain the different levels of abstraction used for programming in verilog. (10 Marks)

## Module-2

- 3 a. Explain system tasks and compiler directives in verilog. (06 Marks)
  - b. What are the basic components of a module? Explain all the components of a verilog module with a neat block diagram. (06 Marks)
  - c. Write verilog description of SR Latch. Also write stimulus code. (04 Marks)

#### OR

- 4 a. Write a note on: i) Registers ii) Nets iii) Arrays iv) Parameters v) Vectors vi) Memories. (12 Marks)
  - b. Declare a top-level module "Stimulus". Define Reg\_in (4 bit) and Clk (1 bit) as register variables and Reg\_out (4 bits) as wire. Instantiate the module "shift-reg" in "stimulus" block and connect the ports by ordered list. Declare A (4 bit) and clock (1 bit) as inputs and B (4 bit) as output in "shift-reg" module. (No need to show internals). Write a verilog code for the above. (04 Marks)

## Module-3

- 5 a. Write the verilog description of 4 bit ripple carry adder at gate level abstraction, with a neat block diagram. Also, write stimulus block. (08 Marks)
  - b. What would be the output of the following:

$$a = 4'b1010$$
,  $b = 4'b11111$ 

- i) a & b ii) a & & b
- Î
- iii) & a iv) a >> 1
- v) a >>>
- vi)  $y = \{2\{a\}\}\$

- vii) a ∧ b
- $viii) z = \{a, b\}.$

(08 Marks)

#### OR

a. A full subtractor has three 1-bit inputs x, y and z (previous borrow) and two 1-bit outputs D(Difference) and B(Borrow). The logic equations are

$$D = xyz + xyz + xyz + xyz$$

$$B = xy + xz + yz$$

Write verilog description using dataflow modeling. Instantiate the subtractor module inside a stimulus block and test all possible combinations of inputs x, y and z. (08 Marks)

# 15EC53

b. Design 4:1 multiplexer using gate level modeling or structural description. Write stimulus block.

(08 Marks)

# Module-4

7

| a. | Explain structured procedure statements in verilog.                      | (06 Marks) |
|----|--------------------------------------------------------------------------|------------|
| b. | Write a verilog behavioral 8:1 multiplexer program using case statement. | (06 Marks) |
| C. | Explain casex and casez statements in verilog.                           | (04 Marks) |

#### OR

| 8 | a. | Explain procedural assignment statements in verilog.         |   | (06 Marks) |
|---|----|--------------------------------------------------------------|---|------------|
|   | b. | Explain sequential and parallel blocks with examples.        |   | (06 Marks) |
|   | C. | Write a verilog code to find the first bit with a value 1 in | 1 |            |
|   |    | Flag = 16'b 0010_0000_0000_0000.                             |   | (04 Marks) |

# Module-5

a. Explain the design tool flow followed in VLSI design with a neat flow diagram.
b. Write VHDL Data flow description of 1 Bit full Adder.
(06 Marks)

# OR

a. Explain the relationship between a design entity and its entity declaration and architecture body in VHDL. (10 Marks)
b. Write VHDL structural description of 1 Bit Full Adder. (06 Marks)