Fifth Semester B.E. Degree Examination, June/July 2016 Fundamentals of CMOS VLSI

Time: 3 hrs.

2. Any revealing of identification, appear to evaluator and /arequations written eg, 42+8 = 50, will treated as malpractice.

ily draw diagonal cross lines on the remaining blank pa

Important Note: 1. On completing your answers, compu

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- a. Discuss latch-up in a p-well CMOS structure and its remedies. With neat figure explain twin tub CMOS process steps. (10 Marks)
 - b. For an NMOSFET, the following details are available $\mu n = 500 \text{cm}^2/\text{V-se}$, $(V_a V_{tn}) = 2.6 \text{V}$ $t_{ox} = 100 \text{ Å}$. Calculate Rn of the device if $w = 100 \mu m L = 0.5 \mu m$. (05 Marks)
 - c. Deduce an equation for figure of merit of MOS transistor. Find the operating frequency f_o in the following condition $\mu n = 125 \text{cm}^2/\text{v-sec}$, $L = 2 \mu \text{m}$, $V_{gs} = 2V$ and $\mu_{tn} = 1V$. (05 Marks)
- What are the uses of stick diagram? Give the table of color and monochrome stick encoding for simple single metal NMOS process.

 (07 Marks)
 - b. Draw the CMOS circuit diagram, stick diagram and symbolic diagram of Boolean function $F = \overline{wx + yz}$. (06 Marks)
 - c. What do you mean by λ based design rule? Explain λ based design rules applicable to MOS layers and transistors. (07 Marks)
- 3 a. With neat circuit diagram explain the following: (i) A simple BiCMOS inverter and (ii) An improved BiCMOS inverter with no static current flow and better output logic levels.
 - b. Draw and explain the basic structure of dynamic CMOS logic and discuss the charging sharing problem in this structure.

 (10 Marks)
- 4 a. What are the most commonly used scaling models? Provide scaling factors for (i) power dissipation per gate (ii) Gate delay (iii) current density and (iv) speed power product.

 (10 Marks)
 - b. For the given multilayer structure shown in Fig. Q4(b) calculate the total capacitance.

Fig. Q4(b)

PART - B

5	 b. Draw and explain 4: 1 MUX using transmission gate. c. Explain with neat figure, non – inverting dynamic storage cells using CMOS transmission gate. 	10 Marks)
6	b Even loin with west 1' 11 A.A. 1	perations 10 Marks) 10 Marks)
7	b. Describe the CMOS pseudo static memory cell with neat figure.	06 Marks) 06 Marks) 08 Marks)
8	b. Test and Testability. c. Level sensitive scan design and d. Built in self-test (BIST)	05 Marks) 05 Marks) 05 Marks) 05 Marks)

	Third documents	
	· Aller Allien	
High		