USN

10EC56

Fifth Semester B.E. Degree Examination, June/July 2015 Fundamentals of CMOS VLSI

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- Discuss the nMOS enhancement mode transistor for different conditions of yellow (06 Marks)
 - Elaborate the concept of P-well falorication with neat sketches. (10 Marks)
 - Compare CMOS and bipolar technologies.

(04 Marks)

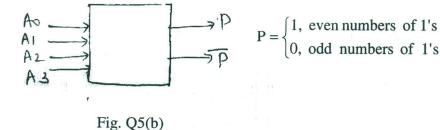
- Obtain the transfer characteristics of a CMOS inverter and mark all the regions. Showing the status of PMOS and NMOS transistors. (10 Marks)
 - b. Illustrate the schematic and stick diagram for the expression $Y = \overline{A(B+C)}$. (10 Marks)

- Discuss in detail the λ based design for CMOS. (10 Marks) Realize a 3-input NAND gate for clocked CMOS logic and also for CMOS domino logic.
 - (06 Marks) Discuss the working of pseudo nMOS logic with suitable example. (04 Marks)
- a. Describe the delay unit τ in terms of sheet resistance and area capacitance for the CMOS inverter pain shown, calculate the total delay. (08 Marks)

Fig. Q4(a)

b. Explain in brief the wiring capacitances.

(06 Marks)


- c. Narrate the steps involved in calculate the sheet resistance of :
 - i) Transistor channel ii) nMOS inverter iii) CMOS inverter.

(06 Marks)

PART - B.

- What are the scaling factors for the following device parameters:
 - i) Gate capacitance cg ii) max-operating frequency f0 iii) current density iv) power dissipation per gate p_g v) power speed product PT. (10 Marks)
 - Design a parity generator with the following specifications and draw the stick diagram of one basic cell.

(10 Marks)

10EC56

6	a. b. c.	Draw the basic form of a two-phase clock generator and explain in detail. Discuss the architectural issues to be followed in the design of a VLSI subsystem. Explain the precharge bus approach used in system design.	(08 Marks) (06 Marks) (06 Marks)
7	a. b.	Explain the three transistor dynamic RAM cell. Discuss the Bangh-Wooley method used for two's complement multiplication.	(10 Marks) (10 Marks)
8	a. b. c.	Narrate the meaning of "Real Estate" in VLSI design. Explain testing and testability in detail. Write a short note on scan design techniques.	(05 Marks) (10 Marks) (05 Marks)

		Narrate the meaning of "Real Estate" in VLSI design. Explain testing and testability in detail. Write a short note on scan design techniques. ***** ***** ***** ***** ****** ****	