15EC552

Fifth Semester B.E. Degree Examination, Dec.2017/Jan.2018 Switching and Finite Automata Theory

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

- a. Discuss the following:
 - i) Threshold element
 - ii) Admissible pattern.

(08 Marks)

b. Show that a threshold logic realization of a full adder requires only tow threshold elements. (Note: both sum and carryout must be generated).

- a. By examining the linear inequalities, determine which of the following functions is a threshold function, and for each one that is, find the corresponding weight - threshold vector.
 - i) $f_1(x_1, x_2, x_3) = \Sigma(1, 2, 3, 7)$
 - ii) $f_2(x_1, x_2, x_3) = \Sigma(0, 2, 4, 5, 6)$
 - iii) $f_3(x_1, x_2, x_3) = \Sigma(0,3,5,6)$

(10 Marks)

b. Explain the concept of Geometrical representation with an example.

(06 Marks)

Module-2

- Write a note on:
 - i) Preset experiments
 - ii) Adaptive experiments.

(08 Marks)

b. For the circuit of Fig. Q3 (b), find all tests to detect the faults x_3 , S - a - 0 and S - a - 1.

Fig Q.3(b)

(08 Marks)

OR

a. Explain Fault detection of path sensitizing and list its limitation.

b. Analyse each of the circuits shown in Fig. Q4 (b) i and ii for static hazards. Redesign each circuit so that it becomes hazard – free.

ii)

(08 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be treated as malpractice.

Module-3

5 a. What are compatible states? For the tabular column Table Q5(a), shown machine 'M', find the augmented machine and corresponding minimal machines.

DC	NS	, Z
PS	X = 0	X = 1
Α	A, 0	C, 0
В	В, 0	В, -
C	B, 0	A, 1

Table Q5 (a) M

(10 Marks)

b. Discuss closed set of compatibility.

(06 Marks)

OR

6 a. What is merger graph? Draw the merger graph for the incompletely specified machine M₁ shown in Table Q6 (a).

DC		NS	5, Z	
PS	I ₁	I_2	I ₃	I_4
A	-	C, 1	E, 1	В, 1
В	E, 0	-	-	\(\sigma\)
C	F, 0	F, 1	C-2\	-
D	<u> </u>	-	B, 1	-
E	1,-1	F, 0	A, 0	D, 1
F	C, 0		B, 0	C, 1

Table Q6 (a) M₁

(10 Marks)

- b. Prove the following theorem:
 - i) The equivalence partition is unique
 - ii) If two states, S_i and S_j of machine M are distinguishable, then they are distinguishable by a sequence of length n-1 or less, where n is the number of states in M.

(06 Marks)

Module-4

7 a. Given the machine table in Table Q7(a) M_2 and two assignments α and β , derive in each case the logical equations for the state variables and the output function.

11	C 10	gical cy	uations	ioi uic	state va	
		N	IS (4	P_{D} Z		
		X = 0	X = 1	X = 0	X = 1	
	A	D	C	0	0	
	В	F	\sim C	0	1	
	С	Е	В	0	0	
	D	В	É	1	0	
	Е	A	D	1	1	
	F	C	D	1	0	

Table Q7(a), M₂

	Уı	y ₂	y ₃		y_1	y_2	y_3
$A \rightarrow$	0	0	0	$A \rightarrow$	1	1	0
$\mathrm{B} \rightarrow$	0	0	-1-	$B \rightarrow$	1	0	1
$C \rightarrow$	0	1	0	$C \rightarrow$	1	0	0
$D \rightarrow$	0	1	1	$D \rightarrow$	0	0	0
$E \rightarrow$	1	0	0	$E \rightarrow$	0	0	1
$F \rightarrow I$	1	0	1	$F \rightarrow$	0	1	0
Ass	ignn	nent	α	Ass	ignn	nent	β

(10 Marks)

b. Explain the lattice of closed partitions.

(06 Marks)

OR

8 a. Construct the π – lattice for the machine M₃ shown in Table Q8(a)

DC	NS		
PS	X = 0	X = 1	
Α	Е	В	
В	Е	Α	
С	D	Α	
D	С	F	
Е	F	С	
F	Е	С	

Table Q8(a), M_3 2 of 3

(10 Marks)

- b. Explain the following:
 - i) Covers
 - ii) The implication graph.

(06 Marks)

Module-5

9 a. Draw the homing tree and synchronizing tree of machine M₄ shown in Table Q9 (a) and explain it.

DC	NS, Z		
PS	X = 0	X = 1	
Α	В, 0	D, 0	
В	A, 0	B, 0	
С	D, 1	A, 0	
D	D, 1	C, 0	

Table Q9(a), M₄

(10 Marks)

- b. Write a note on:
 - i) Distinguishing tree
 - ii) Adaptive distinguishing experiments

(06 Marks)

OR

10 a. What is diagnosable sequence machine? Construct testing table and graph for machine shown in Table Q10 (a).

PS	NS, Z		
	X = 0	X = 1	
A	B, 0	D, 0	
В	A, 0	B, 0	
C	D, 1	A, 0	
D	D, 1	C, 0	

Table Q10(a)

(10 Marks)

b. List the general procedure in second algorithm for the design of fault detection experiments.

(06 Marks)

* * * * *