CBCS SCHEME

15EC46

USN

Fourth Semester B.E. Degree Examination, Dec.2019/Jan.2020 Linear Integrated Circuits

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Define the following terms as applied to Op-Amp and mention their typical values for IC 741. i) CMRR ii) Slew rate iii) PSRR. (06 Marks)
 - b. With a neat circuit diagram explain the basic Op-Amp circuit. (06 Marks)
 - c. An operational amplifier has a specified input voltage range of \pm 8V and an output voltage range of \pm 14V when the supply voltage is \pm 15V. Calculate the maximum output voltage that can be produced i) When the Op-Amp is used as a voltage follower ii) When it is used as an amplifier with a voltage gain of 2. (04 Marks)

OR

- 2 a. With a neat circuit diagram, explain direct coupled inverting amplifier with design steps, input impedance and output impedance. (08 Marks)
 - b. Derive an output voltage equation of 3 input inverting summing circuit and show how it can be converted into averaging circuit.

 (08 Marks)

Module-2

- 3 a. Explain capacitor coupled voltage follower with neat circuit diagram. (08 Marks)
 - b. Design a capacitor coupled non-inverting amplifier to have a voltage gain of approximately 66. The signal amplitude is to be 15mV. The load resistor is 2.2 kΩ and the lower cutoff frequency is to be 120Hz.

 (08 Marks)

OR

- 4 a. Explain the circuit operation of a differential input/output amplifier and derive the equation for differential voltage gain. Also show that the common mode gain is unity. (10 Marks)
 - b. Design a non-saturating precision half wave rectifier to produce a 2V peak output from a sine wave input with a peak value of 0.5V and frequency of 1MHz. Use a bipolar Op-Amp with supply voltage of ±15V.

 (06 Marks)

Module-3

- 5 a. With neat circuit diagram and waveforms, explain sample and hold circuit. (08 Marks)
 - b. Explain differentiating circuit operation with neat circuit diagram and design steps. (08 Marks)

OR

- 6 a. Using 741 Op-Amp with a supply of ±12V, design a phase shift oscillator to have an output frequency of 3.5KHz. (06 Marks)
 - b. Explain log amplifier and derive its output voltage equation. (06 Marks)
 - c. Using a 741 Op-Amp with supply voltage of \pm 12V, design an inverting Schmitt trigger circuit to have trigger points of \pm 2V. (04 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Module-4

- 7 a. Explain the operation of second order high pass filter with a neat circuit diagram, frequency response and design steps.

 (08 Marks)
 - b. With a neat diagram and design steps explain the operation of single stage first order bandpass filter. (08 Marks)

OR

- 8 a. With a neat sketch, explain the working of series Op-Amp regulator. (06 Marks)
 b. List and explain the characteristics of 3 terminal IC regulators. (04 Marks)
 - c. Draw and explain functional diagram of 723 regulators. (06 Marks)

Module-5

- 9 a. Define the following in relation to PLL:
 - i) Lock in range ii) Capture range iii) Pull in time. (06 Marks)

 With respect to invalid diagram, derive the equations and explain R = 2R DAC. What
 - b. With necessary circuit diagram, derive the equations and explain R 2R DAC. What output voltage could be produced by a DAC whose output range is 0 to 10V and whose input binary number is i) 11(for 2 bit DAC) ii) 1011 (for 4 bit DAC). (10 Marks)

OR

- 10 a. Explain the operation of monostable multivibrator using 555 timer. (08 Marks)
 - b. In the satable multivibrator $R_A=3.3k\Omega$ $R_B=6.8k\Omega$ and C=0.01 μF . Calculate :
 - i) t_{High} ii) t_{low} iii) free running frequency iv) duty cycle D. (08 Marks)