

17EC36

USN

Third Semester B.E. Degree Examination, Dec.2018/Jan.2019 **Engineering Electromagnetics**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

State and explain Coulomb's law in complete form. 1

(06 Marks)

- Two particles having charges 2nc and 5nc are spaced 80cm apart. Determine the E at a point is situated at a distance of 0.5m from each of the two particles. Use $\varepsilon r = 5$. (Use Bakelite medium).
- Identical point charges of 3µc are located at the four corners of the square of 5cm side, find (08 Marks) the magnitude of the force on any one charge?

- Derive expression for E due to infinite line charge from first principle. (08 Marks) 2
 - Two uniform line charges of density 4n c/m and 6n c/m lie in x = 0 plane at y = +5m and -6m respectively. Find E at (4, 0, 5)^m. (06 Marks)
 - Define E and D, Hence establish the relation between D and E.

(06 Marks)

Module-2

State and prove Gauss divergence theorem. 3

(06 Marks)

If D = $\frac{5r^2}{4}\hat{a}_r c/m^2$. (in spherical system) then evaluates both sides of the divergence theorem for the volume enclosed by r = 4m, and $\theta = \pi/4$ radians.

(08 Marks)

c. Prove that $\rho_v = \nabla \cdot D$.

(06 Marks)

Establish relation $E = -\nabla y$

(06 Marks)

Electrical potential at an arbitrary point in free space is given as

 $V = (x+1)^2 + (y+2)^2 + (z+3)^2$ Volts at p(2, 1, 0). Find:

ii) \overline{E} iii) $|\overline{E}|$ iv) $|\overline{D}|$

(08 Marks)

Derive continuity of current equation.

(06 Marks)

Module-3

- Derive Laplace and Poisson's equations and write Laplace Equation in all 3 co-ordinate 5 a. (08 Marks)
 - State and prove uniqueness theorem. b.

(07 Marks)

Calculate the numerical values for V and ρ_v at P in free space if $V = \frac{4yz}{x^2 + 1}$ at P(1, 2,3).

(05 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

OR

- a. An assembly of two concentric spherical shells is considered. The inner spherical shell is at a distance of 0.1m and is at a potential of 0 volts. The outer spherical shell is at a distance of 0.2m and at a potential of 100V. The medium between them is a free space. Find \overline{E} and \overline{D} using spherical co-ordinate system.
 - b. State and prove Ampers circuital law.

(08 Marks)

c. At a point P(x, y, z) the components of vector magnetic potential \overline{A} are given as

Ax = 4x + 3y + 2z

Ay = 5x + 6y + 3z and

Az = 2x + 3y + 5z

Determine B at point P and state its nature.

(06 Marks)

Module-4

- a. Derive an expression for the force on a differential current element placed in a magnetic field and deduce the result for straight conductor in a uniform magnetic field. (08 Marks)
 - b. A point charge Q = 18nc has a velocity of 5×10^6 m/s in the direction

 $a_{v} = 0.6\,\hat{a}_{x} + 0.75\hat{a}_{y} + 0.3\,\hat{a}_{z}.$

Calculate the magnitude of the force exerted on the charge by the field

- i) $\overline{E} = -3\hat{a}_x + 4\hat{a}_y + 6\hat{a}_z K v/m$
- ii) $\overline{B} = -3\hat{a}_x + 4\hat{a}_y + 6\hat{a}_z MT$
- iii) $\overline{B} \& \overline{E}$ acting together.

(06 Marks)

c. State and explain Lorentz force equation.

(06 Marks)

OF

8 a. Define: i) Magnetization ii) Permeability.

(04 Marks)

- b. If $\overline{B} = 0.05 \times \hat{a}_y T$ in a material for which magnetic susceptibility $X_m = 2.5$. Find
 - i) u_e ii) ı
- H (iii)
- iv) \overline{M}
- v) Jo vi) J_h

(08 Marks)

c. Discuss the boundary conditions at the interface between two media of different permiabities? (08 Marks)

Module-5

9 a. Derive Maxwell's Equations in point form and Integral form for Time varying fields.

(08 Marks)

- b. For a lossy dielectric $\sigma = 5$ s/m, $\varepsilon_r = 1$ the electric filed intensity is E = 100 sin 10^{10} t. Find J_c and J_d and frequency at which both have Equal Magnitudes. (04 Marks)
- c. Starting from Maxwell's Equation Derive the wave equation for a uniform plane wave travelling in free space. (08 Marks)

OR

10 a. State and prove Poynthing theorem.

(08 Marks)

- b. Deduce the expressions for α and β for a uniform plane wave propagation in good conducting medium.

 (06 Marks)
- c. Wet Marshy soil is characterized by $\sigma = 10^{-2}$ s/m, $\epsilon_r = 15$ and $\mu_r = 1$. At the frequencies 60Hz, 1 MHz, 100 MHz and 10 GHz indicate whether the soil may be considered a conducting dielectric or neither. (06 Marks)