15EC36



## Third Semester B.E. Degree Examination, Dec.2019/Jan.2020 Engineering Electromagnetics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Define electric field intensity and electric flux density and derive the expression for D due to point charge. (05 Marks)
  - Identical point charges of 3μC are located at the four corners of the square of 5cm side, find the magnitude of force on any one charge.
     (08 Marks)
  - c. On the line described x = 4m, y = -2m there is uniform charge distribution of density  $\rho_l = 10$ nc/m. Find E at (4, 2, -1)m. (03 Marks)

OR

- 2 a. State and explain Coulomb's law of force between two point charges in vector form and mention the units of quantities in the force equation. (08 Marks)
  - b. Three point charges  $Q_1 = -1\mu c$ ,  $Q_2 = -2\mu c$  and  $Q_3 = -3\mu c$  are placed at the corners of an equilateral triangle of side 1m, find the magnitude of the electric field intensity at the point bisecting the line joining  $Q_1$  and  $Q_2$ . (08 Marks)

Module-2

- 3 a. In the region  $r \le 2$ ,  $\overline{D} = \frac{7r^2}{3}$  are and in the region r > 2,  $\overline{D} = \frac{120}{r^2}$  are in spherical coordinate system calculate the charge density.
  - b. Derive the expression for continuity of current.

(04 Marks)

c. Derive Maxwell's first equation in electrostatic.

(04 Marks)

OR

- 4 a. Obtain the boundary condition at the interface between a dielectric material and a conductor.
  (08 Marks)
  - b. State and explain Gauss law in point form.

(04 Marks)

c. If the potential field  $V = 3x^2 + 3y^2 + 2z^3$  volts, find: i) V ii) E iii)  $\overline{P}$  at P(-4, 5, 4).

(04 Marks)

Module-3

5 a. State and explain Biot-Savart's law.

(05 Marks)

- b. Two parallel conducting discs are separated by distance 5mm at z = 0 and z = 5mm. If v = 0 at z = 0 and v = 100v at z = 5mm, find the charge densities on the discs. (05 Marks)
- c. Using Poisson's equation obtain the expression for the junction potential in a p-n junction.
  (06 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.



OR

- 6 a. Derive Laplace and Poisson's equation starting from the Gauss's law and also write Laplace's equation in Cartesian, cylindrical and spherical coordinate system. (08 Marks)
  - b. Evaluate both sides of the Stoke's theorem for the field  $\overline{H} = 6xy$   $ax 3y^2ay$  A/m and the rectangular path around the region  $2 \le x \le 5$ ,  $-1 \le y \le 1$ , z = 0 let the positive direction of  $\overline{ds}$  be  $a_z$ .

Module-4

- 7 a. Obtain the expression for reluctance in a series of magnetic circuits. (04 Marks)
  - b. A point charge of Q = -1.2C has velocity,  $\overline{V} = (5\hat{a}x + 2\hat{a}y 3a\hat{z})m/s$ . Find the magnitude of the force exerted on the charge if,
    - i)  $\overline{E} = -18\hat{a}x + 5\hat{a}y 10\hat{a}z \text{ v/m}$
    - ii)  $\overline{B} = -4\hat{a}x + 4\hat{a}y + 3\hat{a}z$  T
    - iii) Both are present simultaneously. (08 Marks)
  - c. Two infinitely long straight conductors are located at x = 0, y = 0 and x = 0, y = 10m. Both carry current of 10A in positive  $\hat{a}_z$  direction. Determine force experienced per meter between them. (04 Marks)

OF

8 a. State and explain Lorentz force equation.

tz force equation. (08 Marks)

- Find the magnetization in a magnetic material where,
- i)  $\mu = 1.8 \times 10^5 \text{ (H/m)} \text{ and M} = 120 \text{ (A/M)}$
- ii)  $\mu_r = 22$ , there are  $8.3 \times 10^{28}$  atoms/m³ and each atom has a dipole moment of  $4.5 \times 10^{-27} (A/m^2)$  and
- iii)  $B = 300 \mu T$  and  $\chi_m = 15$ .

(08 Marks)

Module-5

- 9 a. Starting from Maxwell's equation derive wave equation in E and H for a uniform plane wave travelling in free space. (08 Marks)
  - b. A homogeneous material has  $\in = 2 \times 10^9$  F/m and  $\mu = 1.25 \times 10^{-6}$ H/m and  $\sigma = 0$ . Electric field intensity is given as  $\overline{E} = 400 \cos(10^9 t kz)$  ân v/m, if all the fields vary sinusoidally find  $\overline{D}$ ,  $\overline{B}$  and  $\overline{H}$ . Also find k using Maxwell's equations. (08 Marks)

OR

- 10 a. List Maxwell's equation in point form and integral form. (06 Marks)
  - b. A 15GHZ plane wave travelling in a medium has an amplitude  $E_0 = 20v/m$ . Find phase velocity, propagation constant and impedance. Assume  $\epsilon_r = 2$  and  $\mu_r = 5$ . (06 Marks)
  - c. 8 watts/m<sup>2</sup> is the pointing vector of a plane wave travelling in free space. What is the average energy density? (04 Marks)

and the