

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

USN

10ES36

Third Semester B.E. Degree Examination, June/July 2018 Field Theory

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

State and explain Coulomb's law in vector form.

(06 Marks)

State and prove Gauss's law for point charge.

- (06 Marks)
- c. If a point charge $Q_1 = 25$ nC be located at A(4,-2,7) and a charge $Q_2 = 60$ nC be at B(-3,4,2) in air. Find \overline{D} at C(1,2,3). (08 Marks)
- Define potential and potential difference and establish the relation $E = -\nabla V$. (06 Marks) 2 (06 Marks)
 - Deduce the relations for boundary conditions between two dielectrics.
 - Let $V = \frac{\cos 2\phi}{\cos 2\phi}$ in the free space. Find
 - (i) \overline{E} at P(2,30°,1)
 - (ii) ρ_{V} at $Q\left(\frac{1}{2},60^{\circ},1\right)$

(08 Marks)

- Derive an expression for Poisson's and Laplace's equation in an electrostatic field.
 - (04 Marks)
 - b. Derive the following for a concentric spheres filled with dielectric using Laplace's equation,
 - (i) Potential (V)
- (ii) Electric field intensity (E)
- (iii) Charge density (ρ_s) (08 Marks)
- (iv) Capacitance (C). Determine whether or not the potential equations, satisfies Laplace equation,
 - (i) $V = 2x^2 4y^2 + z^2$
- (ii) $V = r \cos \phi + z$ (iii) $V = r^2 \cos \phi + \theta$
- (08 Marks)

Explain Biot Savart law for a magnetic field.

- (04 Marks)
- State and prove Ampere's circuital law By using it derive an expression for H due to (08 Marks) infinite long straight conductor.
- Find the magnetic field intensity at point 'P' for the circuit shown in Fig. Q4 (c).

(08 Marks)



Fig. Q4 (c)

PART - B

- 5 a. Derive an expression for magnetic force on:
 - (i) Moving point charge and
 - (ii) Differential current element

(10 Marks)

b. A single turn circular coil 5 cm diameter carries a current of 2.8A. Determine the magnetic flux density \overline{B} at a point on the axis 10 cm from the center. Derive the formula used.

(10 Marks)

6 a. Write the Maxwell's equations in point form.

(04 Marks)

b. For a closed stationary path in space linked with a changing magnetic field prove that,

$$\nabla \overline{\mathbf{E}} = -\frac{\partial \mathbf{B}}{\partial t} \,.$$

(08 Marks)

c. Determine the value of 'K' such that following pairs of fields satisfies Maxwell's equation in the region where $\sigma=0$ and $\rho_V=0$,

$$\overline{E} = (x + 100t)\overline{a_y}$$
 V/m and $\overline{H} = (x + 20t)\overline{a_z}$ A/m if $\mu = 0.25$ H/m, $\epsilon = 0.01$ F/m.

(08 Marks)

- Derive general wave equations in terms of \overline{E} and \overline{H} in uniform medium using Maxwell's equations.
 - b. A 300 MHz uniform plane wave propogates through (lossless medium) fresh water for which $\sigma = 0$, $\mu_r = 1$ and $\epsilon_r = 78$. Calculate (i) α (ii) β (iii) λ (iv) η (08 Marks)
 - Define (i) Poynting's theorem and (ii) Skin effect.

(04 Marks)

8 a. Define and explain voltage standing wave ratio (VSWR).

(04 Marks)

- b. Derive an expression for transmission co-efficient and reflection co-efficient at normal incidence of waves at plane dielectric boundary. (08 Marks)
- c. Find ratio $\left(\frac{E_r}{E_i}\right)$ and $\left(\frac{E_t}{E_i}\right)$ at the boundary for the normal incidence if for the region-1;

$$\varepsilon_{r_1} = 8.5$$
, $\mu_{r_1} = 1$ and $\sigma_1 = 0$ and if region-2 is free space.

(08 Marks)