

USN

10ES36

Third Semester B.E. Degree Examination, Dec.2015/Jan.2016

Field Theory

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Define electric field intensity (E). Find an expression for electric field intensity due to N different point charges. (04 Marks)
 - b. Derive Maxwell's first equation in electrostatics.

(04 Marks)

c. Given $\overrightarrow{D} = z \operatorname{Sin} \phi \overrightarrow{ap} + P \operatorname{Sin} \phi \overrightarrow{az} c/m^2$ compute the volume charge density at $(1, 30^{\circ} 2)$.

(04 Marks)

- d. Verify both sides of Gauss Divergence theorem if $\overrightarrow{D} = 2xy \overrightarrow{ax} + x^2 \overrightarrow{ay}$ c/m² present in the region bounded by $0 \le x \le 1$, $0 \le y \le 2$, $0 \le z \le 3$ (08 Marks)
- 2 a. Derive an equation for potential due to infinite line charge.

(04 Marks)

b. If $U = \frac{60 \sin \theta}{r^2} V \text{ find } V \text{ and } \vec{E} \text{ at } P (3,60,25)$

(05 Marks)

c. Derive an equitation for energy stored in terms of \vec{E} and \vec{D}

(05 Marks)

d. Derive Boundary conditions for conductor and Dielectric interface.

(06 Marks)

3 a. Expand ∇^2 operation in different co-ordinate system.

(03 Marks)

b. Verify that the potential field given below satisfies the Laplace equation $V = 2x^2 - 3y^2 + z^2$ $V = [Ar^4 + Br^{-4}] \sin 4P$

(08 Marks)

- c. Solve the Laplace equation for the potential field and find the capacitance in homogeneous region between two concentric conducting spheres with radii a and b such that b > a if V = 0 at r = b, V = Vo at r = a. (09 Marks)
- 4 a. Derive expression for \vec{H} due to straight conductor of finite length.

(08 Marks)

- b. State and explain the following
 - i) Ampere circuit law

ii) Stokes theorem.

(08 Marks)

c. Given the vector magnetic potential

$$\overrightarrow{A} = x^2 \overrightarrow{ax} + 2yz \overrightarrow{ay} + (-x^2) \overrightarrow{az}$$

Find magnetic flux density.

(04 Marks)

PART - B

5 a. Derive expression for force on a differential current element

(06 Marks)

b. A current element $I_1 \Delta L_1 = 10^{-5} \overrightarrow{az} A.m$ is located at $P_1(1, 0, 0)$ while second element $I_2 \Delta L_2 = 10^{-5} (0.6 - \overrightarrow{ax} 2 \overrightarrow{ay} + 3 \overrightarrow{az}) A.m$ is at P_2 (-1, 0,0) both in free space find the vector force exerted on $I_2 \Delta L_2$ by $I_1 \Delta L_1$ (08 Marks)

c. Derive an equation of inductance of Toroid.

(06 Marks)

10ES36

	6	b.	Derive Maxwell's equations for time varying fields. $\vec{E} = \text{Em sin (wt - Bz)}$ ay in free space find \vec{D} , \vec{B} , \vec{H}	(08 Marks) (05 Marks)
		c. d.	Define displacement current density. Derive continuity equation from Maxwell's equation.	(02 Marks) (05 Marks)
	7	a. b.	Derive General wave equation The uniform plane wave travelling in free space is given by Ey = 10.4 e ^{j(2π×10° t-βx)} μv/m Find: i) Direction of wave propagation. ii) Phase velocity iii) Phase constant iv) Equation for magnetic field	(08 Marks)
		c.	For $E = E_m e^{-\alpha z} \cos(wt - \beta z)$ ax find average power density. Assume free space.	(08 Marks) (04 Marks)
	8	b.	Derive expression for transmission co-efficient and Reflection co-efficient f waves at normal incidence. For $n_1 = 100\Omega$, $n_2 = 100\Omega$ and $Ex_1 = 100v/m$ calculate amplitude of incident, retransmitted waves. Also show that average power is conserved. Define SWR.	(08 Marks)
			Alidential decumponit Land Account to the second se	
		S	Shilder Hiller.	
High				