

10ES32

Third Semester B.E. Degree Examination, June/July 2015 **Analog Electronic Circuits**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- State and explain the various resistance levels of the semiconductor diode. (06 Marks)
 - Explain the working of a full wave centre tapped rectifier. Also determine ripple factor, (10 Marks) efficiency and voltage regulation.
 - c. Design a suitable circuit represented by the box shown below, which has the input and (04 Marks) output waveforms as indicated.

Fig. Q1(c)

- Name different biasing methods of transistor. With circuit diagram analyze the fixed bias 2 (10 Marks) circuit, with effect of variation in I_B, R_c and V_{CC} on Q. point of the load line. (04 Marks)
 - b. Explain the circuit of a transistor switch being used as an inverter.
 - c. In a voltage divider bias circuit of BJT. $V_{CC}=20~V,~R_{C}=10~k\Omega,~RE=1.5~k\Omega,$ $R_1=40~\text{k}\Omega$, $R_2=4~\text{k}\Omega$. Assume silicon transistor with $\beta=150$. Find I_C , V_{CE} and $I_{C(sat)}$ using (06 Marks) exact analysis.
- Define h parameters and hence derive h parameters model of CE BIT. (06 Marks)
 - b. Explain with a neat circuit diagram of emitter follower configuration. Justify how voltage (06 Marks) gain is nearly equal to one.
 - For the circuit shown below determine V_{CC} , if $A_V = -160$ and $r_0 = 100$ k Ω . Take $\beta = 100$. (08 Marks)

Fig. Q3(c)

10ES32

- a. Draw the single stage RC coupled BJT amplifier and discuss the effect of (low frequency response): i) Input capacitance C_S ii) output capacitance C_C and iii) Emitter by pass (05 Marks) capacitance Ce on frequency response.
 - b. Prove that miller effect of input capacitance $C_{Mi} = (1 A_v)$ Cf and output capacitance

 $C_{M0} = \left(1 - \frac{1}{A_v}\right) C_f.$ (10 Marks)

- c. It is desired that the voltage gain of an RC coupled amplifier at 60 Hz should not decrease by more than 10% from its mid bond value. Calculate:
 - i) the lower 3 dB frequency
 - ii) the required C if $R = 2000 \Omega$.

(05 Marks)

PART - B

- a. Derive expressions for Z_i and A_i for a Darlington emitter follower circuit. (10 Marks)
 - Mention the types of feedback connections. Draw their block diagrams indicating input and (06 Marks) output signal.
 - c. List the general characteristics of a negative feedback amplifier and write its advantages.

(04 Marks)

- With a neat circuit diagram, explain the operation of a transformer coupled class A power 6 (07 Marks) amplifier.
 - b. Explain the operation of a class B push-pull amplifier and derive its conversion efficiency. (08 Marks)
 - The following distortion reading are available for a power amplifier: $D_2 = 0.2$, $D_3 = 0.02$, $D_4 = 0.06$, with $I_1 = 3.3$ A and $R_C = 4 \Omega$. Calculate: i) the THD ii) the fundamental power component iii) the total power. (05 Marks)
- a. Explain the working of Wien bridge oscillator.

(07 Marks)

- b. With a neat circuit diagram, explain the operation of BJT Colpitts oscillator. (06 Marks)
- c. A crystal has the following parameter L=0.334 H, $C_M=1$ pF, C=0.065 and R=5.5 k Ω . Calculate the series resonant frequency, parallel resonant frequency and find Q of the (07 Marks) crystal.
- Draw the JFET common drain configuration (source follower) circuit. Derive Zi, Z₀ and A_v using small signal model. Write its characteristics. (10 Marks)
 - b. Compare JFET and MOSFET.

(03 Marks)

For the JFET common drain configuration shown below. Given $I_{dss} = 10$ mA, $V_P = -5V$, $r_d = 40 \text{ k}\Omega$, $V_{GSQ} = -2.85 \text{ V}$ i) Calculate Z_i and Z_0 ii) Calculate A_v iii) find V_0 if $V_i = 20 \text{ mV}$ (07 Marks)

Fig. Q8(c)