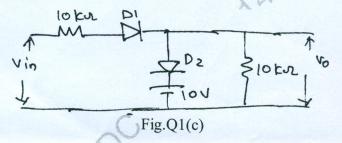


10ES32

Third Semester B.E. Degree Examination, Dec.2015/Jan.2016 Analog Electronic Circuit

Time: 3 hrs.

Max. Marks: 100


Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

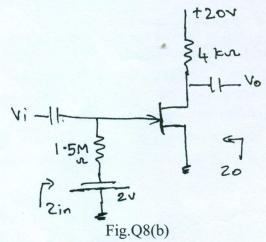
PART - A

a. With necessary equivalent circuit, explain the various diode equivalent circuits. (06 Marks)

b. What do you understand by reverse recovery time? Explain its importance in selection of a diode for an application. (06 Marks)

c. For the diode circuit shown in Fig. Q1(c) draw the transfer characteristics. The input is 40 sin ωt. Show clearly the steps of analysis. All diodes are ideal.
 (08 Marks)

- Discuss the effect of varying I_B and V_{CC} on the Q point. Explain your answer with relevant diagram.
 - b. An emitter bias circuit has $R_C=2~k\Omega$, $R_E=680~\Omega$, $V_E=2.1V$, $V_{CE}=7.3V$, $I_B=20~\mu A$. Find V_{CC} , R_B and β . (06 Marks)
 - c. A voltage divider biased circuit has $R_1 = 39 \text{ k}\Omega$, $R_2 = 8.2 \text{ k}\Omega$, $R_C = 3.3 \text{ k}\Omega$, $R_E = 1 \text{ k}\Omega$, $V_{CC} = 18 \text{ V}$. The silicon transistor used has $\beta = 120$. Find Q point and stability factor.


(08 Marks)

- 3 a. Derive an expression for voltage gain, input impedance and output impedance of an emitter follower amplifier using re-model. (06 Marks)
 - b. A voltage divider biased amplifier has $R_1 = 82 \text{ k}\Omega$, $R_2 = 22 \text{ k}\Omega$, $R_E = 1 \text{ k}\Omega$, $R_C = 2.2 \text{ k}\Omega$, $V_{CC} = 18 \text{ V}$. The silicon transistor has $\beta = 100$. Take $R_S = 1 \text{ k}\Omega$, $R_L = 5.6 \text{ k}\Omega$. Find voltage gain, input impedance, output impedance. (06 Marks)
 - c. A transistor in CE mode has $h_{ie} = 1100~\Omega$, $h_{fe} = 100$, $h_{re} = 2.5 \times 10^{-4}$, $h_{oe} = 25~\mu$ T. Find voltage gain, input impedance and output impedance. Take $R_S = 1~k\Omega$, $R_L = 1~k\Omega$. Also find current gain.
- 4 a. Discuss with relevant equivalent circuit the method of determination of lower cutoff frequency for a voltage divider biased CE amplifier. (10 Marks)
 - b. A voltage divider biased CE amplifier has $R_S = 1 \text{ k} \Omega$, $R_1 = 40 \text{ k} \Omega$, $R_2 = 10 \text{ k} \Omega$, $R_E = 2 \text{ k} \Omega$, $R_C = 2.2 \text{ k} \Omega$, $C_S = 10 \text{ } \mu\text{F}$, $C_C = 1 \text{ } \mu\text{F}$, $C_E = 20 \text{ } \mu\text{F}$, $\beta = 100$, $V_{CC} = 20$. The parasitic capacitance are $C_\pi(C_{be}) = 36 \text{ pF}$, $C_\mu(C_{bc}) = 4 \text{ pF}$, $C_{ce} = 1 \text{ pF}$, $C_{wi} = 6 \text{ pF}$, $C_{wo} = 8 \text{ pF}$. Determine higher cutoff frequency.

PART - B

- 5 a. Obtain expression for voltage gain, input impedance and output impedance of a Darlington emitter follower. Draw necessary equivalent circuit. (08 Marks)
 - b. Mention the different configuration of feedback amplifiers and obtain expression for voltage gain with feedback for any one configuration. (06 Marks)
 - c. What are the advantages of cascading amplifiers? Obtain expression for overall voltage gain for an n stage cascaded amplifier. (06 Marks)
- 6 a. Prove that the maximum conversion efficiency of class A transformer coupled amplifier is 50%. (08 Marks)
 - b. With neat diagram, explain the methods of obtaining phase shift of input signal for class B operation. (06 Marks)
 - c. The harmonic distortion component in an power amplifier is $D_2 = 0.1$, $D_3 = 0.02$, $D_4 = 0.03$. The fundamental current amplitude is 4 A and it supplies a load of 8 Ω . Find total harmonic distortion, fundamental power and total power. (06 Marks)
- 7 a. What is Barkhansen criteria for sustained oscillation? Explain basic principle of operation of oscillators. (08 Marks)
 - b. With a neat circuit diagram, explain the working of Hartley oscillator. Write the equation for frequency of oscillations. (08 Marks)
 - c. A crystal has mounting capacitance of 10 pF. The inductance equivalent of mass is 1 mH, the frictional resistance = 1 k Ω and compliance = 1 pF. Find series and parallel resonant frequency. (04 Marks)
- 8 a. Obtain the expression for voltage gain, input impedance output impedance for a JFET common source amplifier with self bias configuration. (08 Marks)
 - b. For the FET amplifier in Fig. Q8(b), find voltage gain, input impedance and output impedance. The FET has I_{DSS} = 15 mA, V_p = -6V, Y_{OS} = 25 μ s. (08 Marks)

c. Mention the difference between BJT and FET.

(04 Marks)

* * * * *