

USN

15MAT11

First Semester B.E. Degree Examination, June/July 2016 **Engineering Mathematics - I**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Find the nth derivative of $y = e^{-3x} \cos^3 x$.

(06 Marks)

Find the angle of intersection between the curves $r = a(1 + \sin \theta)$ and $r = a(1 - \cos \theta)$.

(05 Marks)

c. Find the radius of curvature at the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ on the curve $x^3 + y^3 = 3axy$. (05 Marks)

a. If $y = \sin(\log(x^2 + 2x + 1))$, prove that $(x + 1)^2 y_{n+2} + (2n + 1)(x + 1)y_{n+1} + (n^2 + 4)y_n = 0$.

(06 Marks)

b. Find the pedal equation for the curve $r^m \cos m\theta = a^m$.

(05 Marks)

Find the radius of curvature of the curve $x^4 + y^4 = 2$ at the point (1, 1).

(05 Marks)

a. Expand sin x in powers of $x - \frac{\pi}{2}$ upto 4th degree terms using Taylor's series.

(05 Marks)

b. Evaluate: Limit $\left(\frac{\tan x}{x}\right)^{1/x^2}$.

(05 Marks)

c. If $u = \tan^{-1} \left(\frac{x^2 + y^2}{x + y} \right)$ prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{2} \sin 2u$.

(06 Marks)

a. Expand $log(1 + e^x)$ using Maclaurin's series upto 3^{rd} degree terms.

(06 Marks)

b. If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$ then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$.

(05 Marks)

c. If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$, find $J\left(\frac{x, y, z}{r \theta \phi}\right)$.

(05 Marks)

- a. A particle moves along the curve $x = 2t^2$, $y = t^2 4t$, z = 3t 5, where t is the time, find the component of its velocity and acceleration in the direction of the vector i - 3j + 2k at t = 1. (06 Marks)
 - Show that $\overrightarrow{F} = (6xy + z^3)i + (3x^2 z)j + (3xz^2 y)k$ is irrotational, find ϕ such that $F = \nabla \phi$.
 - Prove that div(curl u) = 0.

(05 Marks) (05 Marks)

(06 Marks) (05 Marks)

(05 Marks)

b. Prove with usual notations Curl (grad
$$\phi$$
) = 0

c. Find div \overrightarrow{f} and curl \overrightarrow{f} of \overrightarrow{f} = grad($x^3 + y^3 + z^3 - 3xyz$).

7 a. Obtain the reduction formula of
$$\int \sin^m x \cos^n x dx$$
. (06 Marks)

b. Solve
$$(x^2 + y^3 + 6x) dx + y^2x dy = 0$$
. (05 Marks)

c. Find the orthogonal trajectory of
$$r^n = a^n \cos n\theta$$
, where a is the parameter. (05 Marks)

OR

8 a. Obtain the reduction formula of
$$\int \cos^n x \, dx$$
 and hence evaluate: $\int_0^{\pi/2} \cos^n x \, dx$. (06 Marks)

b. Solve
$$\frac{dy}{dx} = xy^3 - xy$$
. (05 Marks)

c. If the temperature of the air is 30°C and the substance cools from 100°C to 70°C in 15 minutes, find when the temperature reaches at 40°C. (Use Newton's law of cooling).

Find the rank of the matrix

$$A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}.$$
 (06 Marks)

b. Find the largest eigen value and the corresponding eigen vector of the matrix $A = \begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$ by power method, use $\begin{bmatrix} 1, 0 & 0 \end{bmatrix}^T$ as initial vector, take five iterations.

(05 Marks)

c. Reduce the matrix
$$A = \begin{bmatrix} -19 & 7 \\ -42 & 16 \end{bmatrix}$$
 to the diagonal form. (05 Marks)

OR

10 a. Use Gauss – Siedel iteration method upto 3 iterations to solve with
$$(0, 0, 0)$$
 as initial values $10x + y + z = 12$
 $x + 10y + z = 12$
 $x + y + 10z = 12$. (06 Marks)

b. Show that the transformation:

$$y_1 = 2x_1 + x_2 + x_3$$

 $y_2 = x_1 + x_2 + 2x_3$
 $y_3 = x_1 - 2x_3$

is regular. Write down the inverse transformation.

c. Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 - 2yz + 2zx - 2xy$ to the canonical form.

(05 Marks)

(05 Marks)