

USN

10CS/IS661

Sixth Semester B.E. Degree Examination, Dec.2017/Jan.2018 Operations Research

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Define OR. Explain the nature and impact of OR.

(10 Marks)

- b. Old hens can be bought at Rs. 2 each but young ones at Rs. 5 each. The old hens lay 3 eggs per week and the young ones lay 5 eggs per week, each egg being worth 30 paise. A hen (young/old) costs Rs. 1 per week to feed. You have only Rs. 80 to spend for buying hens. How many of each kind should you buy to give a profit of more than Rs. 6 per week, assuming that you cannot house more than 20 hens. Write a mathematical model of the problem.

 (10 Marks)
- 2 a. Explain the concept of tie breaking in simplex method.

(10 Marks)

b. Use simplex method to solve the following LPP:

Maximize $Z = 4x_1 + 10x_2$

Subject to constraints : $2x_1 + x_2 \le 50$

$$2x_1 + 5x_2 \le 100$$

$$2x_1 + 3x_2 \le 90$$

and
$$x_1, x_2 \ge 0$$
.

(10 Marks)

a. Explain the post optimality analysis in simplex method.

(10 Marks)

b. Solve the following LPP by using Big M Method.

Maximize $Z = 6x_1 + 4x_2$

Subject to constraints
$$2x_1 + 3x_2 \le 30$$

$$3x_1 + 2x_2 \le 24$$

$$x_1 + x_2 \ge 3$$

and
$$x_1, x_2 \ge 0$$
.

(10 Marks)

4 a. Explain the economic interpretation of duality with an example.

(10 Marks)

b. Solve the following LPP by using revises simplex method.

Maximize
$$Z = x_1 + 2x_2$$

$$x_1 + x_2 \le 3$$

$$x_1 + 2x_2 \le 5$$

$$3x_1 + x_2 \le 6$$

and
$$x_1, x_2 \ge 0$$
.

(10 Marks)

10CS/IS661

(05 Marks)

PART - B

- 5 a. Explain the essence of sensitivity analysis.
 - b. Solve the following LPP by using dual simplex method.

Maximize $Z = 2x_1 + x_2$

Subject to the constrains

$$x_1 + 2x_2 \le 10$$
$$x_1 + x_2 \le 6$$

 $x_1 - x_2 \le 2$

 $x_1 - 2x_2 \le 1$ and $x_1, x_2 \ge 0$

(15 Marks)

6 a. Explain Hungarian Algorithm to solve assignment problem.

(10 Marks)

- o. Solve the following Transportation problem.
 - i) Use minimum cost method for IBFS
 - ii) Use u-v method for obtaining optimum solution

7/	1 00			net .	Supply points
1	14	6	8	8	40
(6	8	> 6	7	60
	5	47	6	8	50
_	20	120	70	50	

Demand points 20 30 50 50

(10 Marks)

- 7 a. Explain the following terms:
 - i) Pure strategy
 - ii) Mixed strategy
 - iii) Saddle point
 - iv) Payoff matrix
 - v) Two person zero sum game.

(10 Marks)

b. Obtain the optimal strategies for both persons and the value of the game for zero – sum two – person game whose payoff matrix is as follows:

$$\begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 6 \\ 4 & 1 \\ 2 & 2 \\ -5 & 0 \end{bmatrix}$$

(10 Marks)

- Write a short notes on:
 - a. Nature of Metaheuristic
 - b. Tabu Search algorithm
 - c. Genetic algorithm
 - d. Simulated Annealing.

(20 Marks)