Fifth Semester B.E. Degree Examination, June/July 2015 Formal Languages and Automata Theory

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- a. Design a DFA to read strings mode up of letters "CHARIOT" and recognize these strings that contains the word "CAT" as a substring.
 - b. Draw DFA to accept the language $L = \{\omega : \omega \text{ has add number of } 1\text{'s and followed by even} \}$ number of 0's. Completely define DFA and transition function. (06 Marks)
 - c. Convert the following NFA to its equivalent DFA.

(06 Marks)

- a. Prove that if L = L(A) for some DFA, then there is a regular expression R such that L = L(R). (06 Marks)
 - b. For the following DFA, obtain regular expressions R_{ii} (0) and R_{ii} (1).

(09 Marks)

States	$\Sigma \wedge \gamma$	
	10	1
$\rightarrow q_1$	q_2	q_1
q_2	q_3	q_1
q_3	q ₃	q_2

Construct NFA for regular expression $V = (01 + 10)^{+}$.

(05 Marks)

3 State and prove pumping Lemma for regular languages.

(05 Marks)

b. Show that $L = \{A^{n!} | u \ge 0\}$ is not regular.

(05 Marks)

Construct 0 minimum automation equivalent to given automation 'M' whose transition table given below:

States	input	
	0	1
$\rightarrow q_0$	q_0	q_3
q_1	q_2	q_5
q_2	q_3	q ₄
q_3	q_0	q ₅
q_4	q_0	q 6
q_5	q_1	q_4
q ₆ *	q_1	q_3

(10 Marks)

- What is a grammer? Explain the classification of grammers with examples.
- (07 Marks)

- Obtain the grammer to generate the following languages:
 - i) $L = \{\omega : n_a(\omega) \mod 2 = 0 \text{ where } \omega \in (a, b)^*\}$
- ii) $L = \{\omega : \omega \text{ is a palindrome, where } \omega \in (a, b)^*\}$
- iii) $L = a^n b^{2n} | u \ge 1$.

(06 Marks)

- Show that the following grammer is ambiguous:
 - $S \rightarrow a \mid Sa \mid bSS \mid SSb \mid SbS$.

(07 Marks)

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, w.r. be treated as malpractice.

PART - B

5 a. Construct PDA for the language and simulate this PDA

 $L = \{a^i b^j c^k | j = i + k, i, k \ge 0.$

(10 Marks)

b. Define PDA. Explain the language accepted by PDA.

(05 Marks)

c. Explain the PDA with two stocks.

(05 Marks)

6 a. Simplify the grammer by eliminating useless productions.

S AB

 $A \rightarrow a$

 $B \rightarrow C \mid b$

 $C \rightarrow D$

 $D \rightarrow E \mid bC$

 $E \rightarrow d \mid Ab$.

(06 Marks

b. Convert the following CFG to CNF.

 $S \rightarrow aB \mid bA$

 $A \rightarrow a \mid aS \mid bAA$

 $B \rightarrow b \mid aS \mid aBB$.

(06 Marks)

- c. Prove that context free languages are closed under union, concatenation and star. (08 Marks)
- 7 a. Explain the programming techniques for turing machine.

(10 Marks)

- b. Construct a TM for $L = \{a^u b^u c^u | u \ge 1\}$. Give the graphical representation for the obtained TM.
- 8 Explain the following:
 - a. Post correspondence problem
 - b. Recursively enumerable language
 - c. Recursive languages
- d. Universal languages.

(20 Marks)

* * * * *