

USN

10CV661

Sixth Semester B.E. Degree Examination, June/July 2018 Theory of Elasticity

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least EWO questions from each part.

PART - A

- 1 a. List the assumptions made in classical theories of elasticity. Hence define 'stress at a point'.
 - b. Define: i) Normal strain ii) Shear strain.

(10 Marks) (05 Marks)

c. State St. Venant's principle.

(05 Marks)

- 2 a. Derive differential equations of equilibrium for a body subjected to 3-dimensaionl body forces. (06 Marks)
 - Perive the expression $\nabla^4 \phi + (1 \mu) \nabla^2 \rho = 0$ from the biharmonic equation.

(08 Marks)

Prove that the function $\phi = Ax^3$ satisfies the stress function and examine the stress distribution represented by it.

- a. Obtain the compatibility equation for plane stress problems in Cartesian form. (10 Marks)
 - b. The state of stress is given by the following matrix. Determine the principle stresses and principle directions.

$$\begin{bmatrix} 9 & 6 & 3 \\ 6 & 5 & 2 \\ 2 & 2 & 4 \end{bmatrix}$$

(10 Marks)

- a. Obtain the expression for strain components is the form of compatibility equation, for two dimensional problems. (08 Marks)
 - b. For the cantilever beam shown in Fig Q4(a), draw the variation of bending stress and shear stress using the function $\sigma_x = \frac{\partial^2 \phi}{\partial v^2} = C_1 x y$

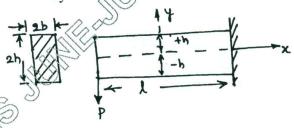


Fig Q4(a)

(12 Marks)

PART - B

5 a. Derive 2 dimensaionl equation of equilibrium is polar co-ordinates.b. Investigate whether the following stress functions are possible

(10 Marks)

 $i \oint r \cos \theta$ $ii) \oint = \frac{p}{\pi} \cdot r \theta \cos \theta$

(10 Marks)

6 a. Derive the expression for stresses for the rotating disc assuming the stress distribution is symmetrical with respect to axis of rotation consider the disc is a solid one. (15 Marks)

b. The following are principle stresses at a point in a stresses material. Taking E=210kN and $\mu=0.3$, calculate volumetric strain and Lame's constant $\sigma_x=200\ N/mm^2$, $\sigma_y=150N/mm^2$, $\sigma_z=120N/mm^2$. (05 Marks)

Derive the effect of circular hole on the stress distribution of a rectangular plate subjected to tensile stress in x-axis only. Hence evaluate stress concentration factor. (20 Marks)

8 a. Determine the torsion and maximum shear stress for an elliptical bar using Laplace equation $\psi = A \psi$ (10 Marks)

b. A hollow aluminium tube of rectangular cross – section is shown in Fig Q8 (b). It is subjected to a torque of 56,500 N-m along its longitudinal axis. Determine the shearing stresses and angle of twist. Take $G = 27.6 \times 10^9 \text{ N/m}^2$.

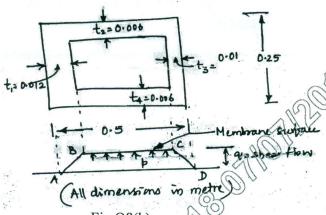


Fig Q8(b)

(10 Marks)