

10CV841

(12 Marks)

Eighth Semester B.E. Degree Examination, June/July 2017 Finite Element Analysis

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART-A

- 1 a. Indicate state of stress and strain at a point interms of $\{\sigma\}$ and $\{\in\}$. Mention its practical importance. (05 Marks)
 - b. How potential energy functions are classified as stable/unstable/neutral? Give examples.

 (08 Marks)
 - c. Obtain stiffness relation(K) with nodal force(F) and nodal displacement(Q) using energy principles. (07 Marks)
- 2 a. Mention the steps followed in Galenkin's method while finding displacement of a cantilever beam. (08 Marks)
 - b. Using Rayleigh-Ritz method, derive an equation for maximum deflection for a simply supported beam at the center using Trignometric function. (12 Marks)
- 3 a. What are displacement functions? Mention its types. Which one of them is widely used and why? (08 Marks)
 - b. Obtain the expression of variation of shape functions for one dimensional bar element interms of:
 - i) L_1 and L_2 ii) x_1 and x_2 .
- 4 a. Obtain the relation between nodal displacement of truss element in local and global coordinates.

 (04 Marks)
 - b. Determine nodal displacements and forces for the truss (two bar) shown in Fig.4(b).

Assume $q_2 = 50 \times 10^{-3}$ mm at node (i) roller support no nodal displacements at hinge support. (16 Marks)

PART - B

Obtain strain-displacement matrix for 4 noded 2 dimensional rectangular element assuming 2DOF at each node. Consider natural coordinates. (10 Marks)

b. Obtain strain-displacement matrix and strains \in_x , \in_y and γ_{xy} for the element shown in Fig.Q5(b). Assume nodal displacements vector $\{q\} = \{2, 1, 1, -4, -3, 7\} \times 10^{-2}$ mm. (10 Marks)

Obtain shape functions for the following elements using Lagrange interpolation function and sketch the variation, shown in Fig.Q6. (20 Marks)

- 7 a. What are isoperimetric elements? Distinguish super from sub parametric elements with sketches. (08 Marks)
 - b. Convert the following parent elements shown in Fig.Q7 to global Cartesian coordinate system having arbitrary curved/surfaces. No equations be derived. Only sketch the transformed shapes.

 (12 Marks)

- Write note on:
 - a. Numbering of nodes
 - b. Patch test
 - c. Softwares used in FEM
 - d. Constitutive law.

(20 Marks)