

Eighth Semester B.E. Degree Examination, June/July 2017 Pavement Design

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, selecting atleast TWO questions from each part.

2. Use of specified charts and tables is permitted.

PART - A

- a. With a neat sketch of cross-section of flexible type pavement, explain the various components and briefly bring out their functions. (10 Marks)
 - b. Bring out differences between highway pavements and airfield pavements. (05 Marks)
 - c. Explain the differences between rigid and flexible pavements. (05 Marks)
- 2 a. Explain the factors that affect design and performance of highway pavements. (06 Marks)
 - b. Plate bearing tests were conducted with a 75 cm dia plate on soil subgrade and a granular base. The stress noticed, when the deflection was 0.25 cm on the subgrade soil was 0.07 MN/m². On the base course, the same plate yield 0.25 cm deflection under a stress of 0.14 MN/m². Design the pavement for an allowable deflection of 0.5 cm, under a wheel load of 40 kN and a tyre pressure of 0.5 MN/m². (14 Marks)

Fig.Q2(b)

- 3 a. Write McLeod's procedure for determining equivalent load factors. (10 Marks)
 - b. Calculate ESWL of a dual wheel assembly carrying 20.44 kN each for pavement thickness of 15, 20 and 25 cms. Centre to centre tyre spacing = 27 cm and distance between the walls of the tyres = 11 cm.

Note: Ordinary graph sheets may be used.

(10 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

4 a. Explain briefly CBR method by cumulative standard axle load for the design of flexible highway pavements. (10 Marks)

b. Design a flexible highway pavement section by triaxial test method (Kansas method) using the following data:

Wheel load = 44 kNTraffic coefficient X = 1.7 Radius of contact area = 160 mmRainfall coefficient Y = 0.95

Design deflection = 2.8 mm E-value of subgrade soil $E_s = 100 \times 10^2 \text{ kN/m}^2$

E-value of base course material $E_b = 400 \times 10^2 \text{ kN/m}^2$

E-value of 75mm thick Bituminous concrete surface course = 1000×10^2 kN/m². (10 Marks)

PART - B

5 a. Explain the following:

(i) Radius of relative stiffness

(ii) Radius of resisting section

(iii) Modulus of subgrade reaction (

(iv) Fatigue behavior of concrete (10 Marks)

b. Calculate the stresses of interior, edge and corner regions of a C.C. pavements using Westergard's stress equations using the following data:

Wheel load = 51 kN;

Modulus of elasticity of concrete = $0.3 \times 10^8 \text{ kN/m}^2$

Poisson's ratio of concrete = 0.15; Pavement thickness = 18 cm;

Modulus of subgrade reaction = 6.0×10^4 kN/m³

Radius of contact area = 15 cm.

(10 Marks)

- 6 a. As per IRC explain the stress involved in the design of dowel bars in rigid CC pavements.
 (10 Marks)
 - b. Determine the spacing between contraction joints for 3.5m slab width having thickness of 20cm. Consider the following two cases:
 - (i) For plain cement concrete (ii)

(ii) For reinforced cement concrete.

Take f = 1.5, γ for $CC = 24 \text{ kN/m}^3$. Allowable tensile stress in $CC = 80 \text{ kN/m}^2$. Allowable tensile stress in steel = $6 \times 10^4 \text{ kN/m}^2$. γ for steel = 75 kN/m^3 .

Total reinforcement of 60 N/m² is provided and is equally distributed in both the directions.

(10 Marks)

- 7 a. Explain any four typical flexible pavement failures with sketches. (08 Marks)
 b. Discuss the functional evaluation by Benkelman beam deflection method. (08 Marks)
 - b. Discuss the functional evaluation by Benkelman beam deflection method.c. Discuss briefly design methods for airfield pavements.

(04 Marks)

- Write short notes on any four of the following:
 - a. Maintenance measures in rigid pavements
 - b. Functional evaluation by visual inspection
 - c. Unevenness measurements
 - d. Rigid pavement failures
 - e. Design factors for runway pavement

(20 Marks)

* * * * *