Eighth Semester B.E. Degree Examination, June/July 2017 Pavement Design Time: 3 hrs. Max. Marks:100 Note: 1. Answer any FIVE full questions, selecting atleast TWO questions from each part. 2. Use of specified charts and tables is permitted. ## PART - A - a. With a neat sketch of cross-section of flexible type pavement, explain the various components and briefly bring out their functions. (10 Marks) - b. Bring out differences between highway pavements and airfield pavements. (05 Marks) - c. Explain the differences between rigid and flexible pavements. (05 Marks) - 2 a. Explain the factors that affect design and performance of highway pavements. (06 Marks) - b. Plate bearing tests were conducted with a 75 cm dia plate on soil subgrade and a granular base. The stress noticed, when the deflection was 0.25 cm on the subgrade soil was 0.07 MN/m². On the base course, the same plate yield 0.25 cm deflection under a stress of 0.14 MN/m². Design the pavement for an allowable deflection of 0.5 cm, under a wheel load of 40 kN and a tyre pressure of 0.5 MN/m². (14 Marks) Fig.Q2(b) - 3 a. Write McLeod's procedure for determining equivalent load factors. (10 Marks) - b. Calculate ESWL of a dual wheel assembly carrying 20.44 kN each for pavement thickness of 15, 20 and 25 cms. Centre to centre tyre spacing = 27 cm and distance between the walls of the tyres = 11 cm. Note: Ordinary graph sheets may be used. (10 Marks) 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 4 a. Explain briefly CBR method by cumulative standard axle load for the design of flexible highway pavements. (10 Marks) b. Design a flexible highway pavement section by triaxial test method (Kansas method) using the following data: Wheel load = 44 kNTraffic coefficient X = 1.7 Radius of contact area = 160 mmRainfall coefficient Y = 0.95 Design deflection = 2.8 mm E-value of subgrade soil $E_s = 100 \times 10^2 \text{ kN/m}^2$ E-value of base course material $E_b = 400 \times 10^2 \text{ kN/m}^2$ E-value of 75mm thick Bituminous concrete surface course = 1000×10^2 kN/m². (10 Marks) ## PART - B 5 a. Explain the following: (i) Radius of relative stiffness (ii) Radius of resisting section (iii) Modulus of subgrade reaction ((iv) Fatigue behavior of concrete (10 Marks) b. Calculate the stresses of interior, edge and corner regions of a C.C. pavements using Westergard's stress equations using the following data: Wheel load = 51 kN; Modulus of elasticity of concrete = $0.3 \times 10^8 \text{ kN/m}^2$ Poisson's ratio of concrete = 0.15; Pavement thickness = 18 cm; Modulus of subgrade reaction = 6.0×10^4 kN/m³ Radius of contact area = 15 cm. (10 Marks) - 6 a. As per IRC explain the stress involved in the design of dowel bars in rigid CC pavements. (10 Marks) - b. Determine the spacing between contraction joints for 3.5m slab width having thickness of 20cm. Consider the following two cases: - (i) For plain cement concrete (ii) (ii) For reinforced cement concrete. Take f = 1.5, γ for $CC = 24 \text{ kN/m}^3$. Allowable tensile stress in $CC = 80 \text{ kN/m}^2$. Allowable tensile stress in steel = $6 \times 10^4 \text{ kN/m}^2$. γ for steel = 75 kN/m^3 . Total reinforcement of 60 N/m² is provided and is equally distributed in both the directions. (10 Marks) - 7 a. Explain any four typical flexible pavement failures with sketches. (08 Marks) b. Discuss the functional evaluation by Benkelman beam deflection method. (08 Marks) - b. Discuss the functional evaluation by Benkelman beam deflection method.c. Discuss briefly design methods for airfield pavements. (04 Marks) - Write short notes on any four of the following: - a. Maintenance measures in rigid pavements - b. Functional evaluation by visual inspection - c. Unevenness measurements - d. Rigid pavement failures - e. Design factors for runway pavement (20 Marks) * * * * *