

USN

10CV833

Eighth Semester B.E. Degree Examination, Dec.2018/Jan.2019 Pavement Design

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO full questions from each part.

PART - A

- a. With the help of sketches mention the various layers of flexible and rigid pavements. Write the functions of each layer. (10 Marks)
 - b. Distinguish between highway pavement and airfield pavement.

(10 Marks)

2 a. State assumptions and limitations of Boussinesq's theory.

(06 Marks)

- b. Find the vertical stress distribution in a homogeneous pavement upto a depth of 60cms. Due to a bullock cart with wheel load 600kg on a vertical plane.
 - i) Along the line of action of load.
 - ii) 5cm away from the line of action of load.

(14 Marks)

3 a. Explain the ESWL concept with neat figure.

(08 Marks)

b. Find the ESWL by graphical method for a dual wheel load assembly with 2000kg on each wheel and tyre pressure of 6.5kg/km² if the centre to centre spacing between the wheels is 25cm. Consider the pavement thickness of 25cm and 45cm. (Use plain graph paper).

(12 Marks)

4 a. Design the pavement section by triaxial leansus method using the following data:

Wheel load = 41kN

E-value of subgrade soil = $10N/mm^2$

E-value of base course material = 40 N/mm²

E-value of wearing course = 100 N/mm² which is 7.5cm thick

Traffic coefficient = 1.5

Rainfall coefficient = 0.9

Radius of contact area = 150mm

Design deflection = 2.5mm

Sketch the pavement section.

(10 Marks)

b. Explain the design of flexible pavement by revised CBR method as per IRC quick lines.

(10 Marks)

PART – B

- 5 a. Explain the following:
 - i) Types and objectives of joints in cement concrete pavement.

ii) Critical combination of stress in a CC pavement.

(10 Marks)

- b. A cement concrete pavement has a thickness of 20cms, has 2 lanes of slab width a 3.35m coefficient of friction between slab and subgrade = 1.5. Weight of slab = 480 kg/m². Allowable working stress in steel = 1400 kg/km². Maximum permissible bond stress,
 - i) Plain bars, 17.5 kg/km².
 - ii) Deformed bars, 24 kg/cm². Design a tie bar system.

(10 Marks)

10CV833

6 a. Explain different types of stresses due to wheel loads.

b. Using the data given below, calculate the wheel load stresses at i) Interior ii) Edge and iii) Corner regions of a cement concrete pavement using Westergaard's stress equation. Also determine the probable location where the crack is likely to develop due to corner loading. Wheel load P = 5100 kg, $E_C = 3.0 \times 10^5 kg/cm^2$, Pavement thickness, h = 18 cms, Poisson's ratio of concrete = $\mu = 0.15$, $K = 6.0 kg/km^3$ and radius of contact area, a = 15 cm.

(10 Marks)

7 a. Explain Benkelman Beam deflection method.

b. What are the requirements of airport pavement?

(10 Marks)

(10 Marks)

8 a. Explain failures in flexible pavements.
b. Write short notes on: i) Mud pumping ii) Structural cracks. (10 Marks)