

15CV/CT32

Third Semester B.E. Degree Examination, June/July 2018 Strength of Materials

Time: 3 hrs.

Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. Missing data, if any, may be suitably assumed.

Module-1

- 1 a. For a bar of uniform section derive an expression for elongation due to self weight. (06 Marks)
 - b. Evaluate the deformation of the bar, given, $E_1 = E_2 = E_3 = 200$ GPa, refer Fig.Q1(b).

(10 Marks)

OR

- 2 a. Derive an expression between Young's modulus, Modulus of rigidity and Poisson's ratio.
 (10 Marks)
 - b. A circular rod of dia 200mm and 500mm long is subjected to a tensile force of 45kN modulus of elasticity = 200 kN/mm², Find stress, strain and elongation of bar due to applied load.

 (06 Marks)

Module-2

At a certain point in a stressed body, the principal stresses are $\sigma_x = 80$ MPa and $\sigma_y = -40$ MPa. Determine σ and τ on the planes whose normal's are at +30° and +120° with x - axis.

OR

- 4 a. Derive an expression of tangential stress and longitudinal stress of thin walled pressure vessels. (08 Marks)
 - b. A rectangular block of material is subjected to a tensile stress of 100N/mm² on one plane and a tensile stress of 50N/mm² on a plane at right angles together with shear stress of 60 N/mm² on same planes, find: i) direction of the principal plane iii) magnitude of the principal plane iii) magnitude of greatest shear stress.

 (08 Marks)

Module-3

- 5 a. Define: i) bending moment ii) shear force iii) shear force diagram iv) bending moment diagram.

 (08 Marks)
 - b. Draw SFD and BMD for the cantilever beam shown in Fig.Q5(b).

(08 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

a. Derive the relation between load intensity, bending moment and shear force. (06 Marks)

b. A beam ABC, 8m long has supplied at A and B, it is long between A and B. The beam carries an udl of 10kN/m between A and B. At free end point C, a point load of 15 kN acts. Draw BMD and locate point of contra-flexure, if any.

(10 Marks)

Module-4

7 a. Explain pure bending with an suitable example and mention the assumptions of pure bending. (06 Marks)

b. A cast iron beam section shown in Fig.Q7(b) is freely supported on a span of 5m. IF the tensile stress is not to exceed 20 N/mm². Find the safe UDL which the beam can carry. Find also the maximum compressive stress. (10 Marks)

OR

8 a. Derive an Euler's crippling load when both ends of the column are pinned. (08 Marks)

b. A hollow cylindrical cost iron column is 4m long both ends being, fixed. Design the column to carry a axial load of 250 kN. Use Rankine's formula and factor of safety = 5. The internal diameter may be taken as 0.80 time the external diameter. Take $E_C = 550 \text{ N/mm}^2$ and

 $\alpha = \frac{1}{1600}.$

(08 Marks)

Module-5

9 a. Derive torsional equation for circular shaft.

(08 Marks)

b. A steel shaft transmits 105kN at 160 rpm. If the shaft is 100mm in diameter. Find the torque on the shaft and the maximum sharing stress induced. (08 Marks)

OR

0 a. Define pure torsion, polar modulus and torsional rigidity.

(06 Marks)

b. A solid shaft is subjected to a torque of 15 kN-m. Find the necessary diameter of the shaft if the allowable shearing stress is 60N/mm^2 and the allowable twist is 1 degree in a length of 20 diameters of the shaft. Take $C = 8 \times 10^4 \text{ N/mm}^2$. (10 Marks)